Skip to main content
Log in

A guide-weight criterion-based topology optimization method for maximizing the fundamental eigenfrequency of the continuum structure

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper first introduces the guide-weight criterion into the topology optimization problems for maximization of the fundamental eigenfrequency of vibrating continuum structures. The traditional solid isotropic material with penalization model is modified to eliminate the artificial localized modes. Based on this modified model, the iteration formula of the design variables is derived using the guide-weight criterion. An iterative mass control strategy is adopted to satisfy the equality constraint on the final mass and to stabilize the iteration process. Additionally, a mass preserving density filter based on Heaviside function is used to solve the gray transition problem. Several typical examples are used to validate the proposed method. Numerical results show that the proposed method is capable of achieving iterative convergence and clear profiles of topologies; meanwhile, the optimal results obtained by the proposed method agree well with those obtained by the commonly used bi-directional evolutionary structural optimization (BESO) method. In particular, the proposed method has a faster convergence rate than the BESO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, Berlin

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bogomolny M (2010) Topology optimization for free vibrations using combined approximations. Int J Numer Methods Eng 82(5):617–636

    Article  MATH  Google Scholar 

  • Briot S, Goldsztejn A (2018) Topology optimization of industrial robots: application to a five-bar mechanism. Mech Mach Theory 120:30–56

    Article  Google Scholar 

  • Chen SX, Ye SH (1984) Criterion method for the optimal design of antenna structure. Acta Mech Solida Sin 4:482–498

    Google Scholar 

  • Chen SX, Ye SH (1986) A guide-weight criterion method for the optimal design of antenna structures. Eng Optim 10(3):199–216

    Article  Google Scholar 

  • Da DC, Xia L, Li GY, Huang XD (2018) Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct Multidiscip Optim 57(6):2143–2159

    Article  MathSciNet  Google Scholar 

  • Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Du JB, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Fleury C (1989) CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Multidiscip Optim 1(2):81–89

    Article  Google Scholar 

  • Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Hong J, Li BT, Chen YB, Peng H (2011) Study on the optimal design of engine cylinder head by parametric structure characterization with weight distribution criterion. J Mech Sci Technol 25(10):2607–2614

    Article  Google Scholar 

  • Hu J, Yao S, Huang XD (2020) Topology optimization of dynamic acoustic-mechanical structures using the ersatz material model. Comput Methods Appl Mech Eng 372:113387

    Article  MathSciNet  MATH  Google Scholar 

  • Huang XD (2020) Smooth topological design of structures using the floating projection. Eng Struct 208:110330

    Article  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  • Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons, Chichester

  • Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5-6):357–364

    Article  Google Scholar 

  • Kane C, Schoenauer M (1996) Topological optimum design using genetic algorithms. Control Cybernet 25:1059–1088

    MathSciNet  MATH  Google Scholar 

  • Lee HA, Park GJ (2015) Nonlinear dynamic response topology optimization using equivalent static loads method. Comput Methods Appl Mech Eng 283:956–970

    Article  MathSciNet  MATH  Google Scholar 

  • Liu XJ, Li ZD, Wang LP, Wang JS (2011a) Solving topology optimization problems by the guide-weight method. Front Mech Eng 6(1):136–150

    Article  Google Scholar 

  • Liu XJ, Li ZD, Chen X (2011b) A new solution for topology optimization problems with multiple loads: the guide-weight method. Sci China Tech Sci 54(6):1505–1514

    Article  MATH  Google Scholar 

  • Liu QM, Chan R, Huang XD (2016) Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Mater Des 106:380–390

    Article  Google Scholar 

  • Luh GC, Lin CY (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9(4):1343–1353

    Article  Google Scholar 

  • Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Methods Eng 67(5):597–628

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  • Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang FW, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Xie YM, Steven GP (1994) A simple approach to structural frequency optimization. Comput Struct 53(6):1487–1491

    Article  Google Scholar 

  • Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505

    Article  MathSciNet  MATH  Google Scholar 

  • Xu HY, Guan LW, Chen X, Wang LP (2013) Guide-weight method for topology optimization of continuum structures including body forces. Finite Elem Anal Des 75:38–49

    Article  MathSciNet  MATH  Google Scholar 

  • Xu MM, Wang ST, Xie XD (2019) Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency. Front Mech Eng 14(2):222–234

    Article  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1999a) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488

    Article  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1999b) Topology optimization for frequencies using an evolutionary method. J Struct Eng 125(12):1432–1438

    Article  Google Scholar 

  • Yoo KS, Han SY (2013) A modified ant colony optimization algorithm for dynamic topology optimization. Comput Struct 123:68–78

    Article  Google Scholar 

  • Yoon GH (2010a) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25-28):1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon GH (2010b) Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization. Comput Struct 88(1-2):120–133

    Article  Google Scholar 

  • Zhao JP, Wang CJ (2016) Dynamic response topology optimization in the time domain using model reduction method. Struct Multidiscip Optim 53(1):101–114

    Article  MathSciNet  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336

    Article  Google Scholar 

  • Zhou PZ, Du JB, Lü ZH (2017) Topology optimization of freely vibrating continuum structures based on nonsmooth optimization. Struct Multidiscip Optim 56(3):603–618

    Article  MathSciNet  Google Scholar 

  • Zuo ZH, Xie YM, Huang XD (2012) Evolutionary topology optimization of structures with multiple displacement and frequency constraints. Adv Struct Eng 15(2):359–372

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant Number 2018YFE0126200), the National Natural Science Foundation of China (Grant Number 91748202), and the China Postdoctoral Science Foundation (Grant Number 2020M670150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The details of the proposed method and all necessary parameters are included in the paper, so the results in this paper can be reproduced. The ANSYS APDL codes for all examples are available from the corresponding author with reasonable request.

Additional information

Responsible editor: Pingfeng Wang

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Huang, G., Chen, X. et al. A guide-weight criterion-based topology optimization method for maximizing the fundamental eigenfrequency of the continuum structure. Struct Multidisc Optim 64, 2135–2148 (2021). https://doi.org/10.1007/s00158-021-02971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02971-7

Keywords

Navigation