Skip to main content
Log in

Multi-constrained topology optimization via the topological sensitivity

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The objective of this paper is to introduce and demonstrate a robust method for multi-constrained topology optimization. The method is derived by combining the topological sensitivity with the classic augmented Lagrangian formulation.

The primary advantages of the proposed method are: (1) it rests on well-established augmented Lagrangian formulation for constrained optimization, (2) the augmented topological level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the level-set can be updated efficiently. The method is illustrated through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural Optimization using Sensitivity Analysis and a Level-set Method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso JJ (2009) Aircraft design optimization. Math Comput Simul 79(6):1948–1958

    Article  MATH  Google Scholar 

  • Amstutz S, Andra H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216:573–588

    Article  MATH  MathSciNet  Google Scholar 

  • Ananthasuresh GK, Kota S, and Gianchandani Y (1994) “A methodical approach to the design of compliant micromechanisms,” in Solid State Sensor and Actuator Workshop, pp. 189–192

  • Andreassen E, Clausen A, Schevenels M, Sigmund O (2011) Efficient Topology Optimization in MATLAB Using 88 Lines of Code. Struct Multidiscip Optim 43:1–16

    Article  MATH  Google Scholar 

  • Ansola R, Vegueria E, Maturana A, Canales J (2010) 3D compliant mechanisms synthesis by a finite element addition procedure. Finite Elem Anal Des 46:760–769

    Article  Google Scholar 

  • Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46:369–384

    Article  MATH  MathSciNet  Google Scholar 

  • Bruggi M, Venini P (2008) A mixed FEM approach to stress constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimization connection. Comput Methods Appl Mech Eng 188(4):713–726

    Article  MATH  Google Scholar 

  • Chiandussi G, Gaviglio I, Ibba I (2004) Topology optimisation of an automotive component without final volume constraint specification. Adv Eng Softw 35:609–617

    Article  MATH  Google Scholar 

  • Choi KK, Kim NH (2005) Structural Sensitivity Analysis and Optimization I: Linear Systems. Springer, New York

    Google Scholar 

  • Coverstone-Carroll VH (2000) Optimal multi-objective low-thrust spacecraft trajectories. Comput Methods Appl Mech Eng 186:387–402

    Article  MATH  Google Scholar 

  • Duysinx P, Bendsoe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Meth Engng 43(8):1453–1478

    Article  MATH  MathSciNet  Google Scholar 

  • Duysinx P, Miegroet LV, Lemaire E, Brüls O, Bruyneel M (2008) Topology and generalized shape optimization: Why stress constraints are so important? Int J Simul Multidisci Des Optim 2:253–258

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: A review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Feijoo RA, Novotny AA, Taroco E, and Padra C (2005) “The topological-shape sensitivity method in two-dimensional linear elasticity topology design,” in Applications of Computational Mechanics in Structures and Fluids, CIMNE

  • Gopalakrishnan SH, Suresh K (2008) Feature Sensitivity: A Generalization of Topological Sensitivity. Finite Elem Anal Des 44(11):696–704

    Article  MathSciNet  Google Scholar 

  • Guo X, Cheng GD (2004) Epsilon-continuation approach for truss topology optimization. Acta Mech Sinica 20(5):526–533

    Article  Google Scholar 

  • Guo X, Zhang WS, Wang YU, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200:3439–3452

    Article  MATH  MathSciNet  Google Scholar 

  • Harzheim L (2006) A review of optimization of cast parts using topology optimization II-Topology optimization with manufacturing constraints. Struct Multidiscip Optim 31(5):388–299

    Article  Google Scholar 

  • James KA, Lee E, Martins JRRA (2012) Stress-based topology optimization using an isoparametric level set method. Finite Elem Anal Des 58:20–30

    Article  Google Scholar 

  • Kesseler E (2006) “Multidisciplinary design analysis and multi-objective optimisation applied to aircraft wing,”. WSEAS Trans Syst Control Cybern 1:221–227

    Google Scholar 

  • Le C (2010) “Developments in topology and shape optimization,” PhD thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign

  • Le C, Norato JA, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620

    Article  Google Scholar 

  • Lee D, Shin S, Park S (2008) Computational Morphogenesis Based Structural Design by Using Material Topology Optimization. Mech Based Des Struct Mach 35:39–58

    Article  Google Scholar 

  • Lin J (2010) A new multi-objective programming scheme for topology optimization of compliant mechanisms. Struct Multidiscip Optim 30:241–255

    Article  Google Scholar 

  • Long W, Liang X, Huang Y, Chen Y (2013) A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization. Comput Aided Des 45:1562–1574

    Article  MathSciNet  Google Scholar 

  • Luo Z (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidiscip Optim 30:142–154

    Article  Google Scholar 

  • Makrodimopoulos A, Bhaskar A, Keane AJ (2010) A compliance based design problem of structures under multiple load cases. Struct Multidiscip Optim 42:739–742

    Article  MathSciNet  Google Scholar 

  • Motamarri P, Ramani A, Kaushik A (2012) Structural topology synthesis with dynamics and nonlinearities using equivalent linear systems. Struct Multidiscip Optim 45(4):545–558

    Article  MATH  MathSciNet  Google Scholar 

  • Nishiwaki S (1998) Topology Optimization of Compliant Mechanisms using the Homogenization Method. Int J Numer Methods Eng 42:535–559

    Article  MATH  MathSciNet  Google Scholar 

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33:375–386

    Article  MATH  MathSciNet  Google Scholar 

  • Novotny AA (2006) Topological-Shape Sensitivity Method: Theory and Applications. Solid Mech Applic 137:469–478

    Google Scholar 

  • Novotny AA, Sokolowski J (2012) Topological Derivatives in Shape Optimization. Springer, Berlin Heidelberg

    Google Scholar 

  • Novotny AA, Feijóo RA, Padra C, Taroco E (2005) Topological Derivative for Linear Elastic Plate Bending Problems. Control Cybern 34(1):339–361

    MATH  Google Scholar 

  • Novotny AA, Feijoo RA, Taroco E (2007) Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem. Comput Methods Appl Mech Eng 196(41–44):4354–4364

    Article  MATH  MathSciNet  Google Scholar 

  • Padhye N (2008) “Topology Optimization of Compliant Mechanism using Multi-Objective Particle SwarmOptimization”, in GECCO’08, July 12–16. Atlanta, Georgia

    Google Scholar 

  • Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437

    Article  MathSciNet  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large displacement compliant mechanisms. Int J Numer Meth Engng 50:2683–2705

    Article  MATH  Google Scholar 

  • Qiu GY, Li XS (2010) A note on the derivation of global stress constraints. Struct Multidiscip Optim 40(1–6):625–628

    Article  MATH  MathSciNet  Google Scholar 

  • Ramani A (2009) A pseudo-sensitivity based discrete variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41:913–934

    Article  Google Scholar 

  • Ramani A (2011) Multi-material topology optimization with strength constraints. Struct Multidiscip Optim 43:597–615

    Article  Google Scholar 

  • Rozvany G (2001) “Stress ratio and compliance based methods in topology optimization—a critical review.,”. Struct Multidiscip Optim 21:109–119

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MATH  MathSciNet  Google Scholar 

  • Saxena A, Ananthasuresh GK (2000) On an optimal property of compliant topologies. Struct Multidiscip Optim 19:36–49

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On Topological Derivative in Shape Optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Stump FV, Silva ECN, Paulino G (2007) Optimization of material distribution in functionally graded structures with stress constraints. Commun Numer Methods Eng 23(6):535–551

    Article  MATH  MathSciNet  Google Scholar 

  • Suresh K (2010) A 199-line Matlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665–679

    Article  MATH  MathSciNet  Google Scholar 

  • Suresh K (2011) “Multi-Objective Topology Optimization on the GPU”, in ASME IDETC/CIE Conference, 2011. Washington, DC

    Google Scholar 

  • Suresh K (2013a) Efficient Generation of Large-Scale Pareto-Optimal Topologies. Struct Multidiscip Optim 47(1):49–61

    Article  MATH  MathSciNet  Google Scholar 

  • Suresh K (2013) “Hinge-Free Compliant Mechanism Design via the Topological Level-Set,” in Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Portland, OR, vol. Submitted

  • Suresh K, Takalloozadeh M (2013) Stress-Constrained Topology Optimization: A Topological Level-Set Approach. Struct Multidiscip Optim 48(2):295–309

    Article  MathSciNet  Google Scholar 

  • Suresh K, Ramani A, and Kaushik A (2012) “An Adaptive Weighting Strategy for Multi-Load Topology Optimization,” in ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago

  • Tortorelli DA, Zixian W (1993) A systematic approach to shape sensitivity analysis. Int J Solids Struct 30(9):1181–1212

    Article  MATH  Google Scholar 

  • Turevsky I, Suresh K (2011) “Tracing the Envelope of the Objective-Space in Multi-Objective Topology Optimization”, presented at the ASME IDETC/CIE Conference. Washington, DC

    Google Scholar 

  • Turevsky I, Gopalakrishnan SH, Suresh K (2009) An Efficient Numerical Method for Computing the Topological Sensitivity of Arbitrary Shaped Features in Plate Bending. Int J Numer Methods Eng 79:1683–1702

    Article  MATH  Google Scholar 

  • TurevskyI, and Suresh K (2007) “Generalization of Topological Sensitivity and its Application to Defeaturing,” in ASME IDETC Conference, Las Vegas

  • van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Wang L (2004) Automobile body reinforcement by finite element optimization. Finite Elem Anal Des 40(8):879–893

    Article  Google Scholar 

  • Wang S, Sturler ED, Paulino G (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468

    Article  MATH  Google Scholar 

  • Wright J, Nocedal S (1999) Numerical Optimization. Springer

  • Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64

    Article  Google Scholar 

  • Yalamanchili VK and Kumar AV (2012) “Topology Optimization of Structures using a Global Stress Measure,” in Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, IL, 2012

  • Yang RJ, Chen CJ (1996) Stress-Based Topology Optimization. Struct Optim 12:98–105

    Article  Google Scholar 

  • Zhang WS, Guo X, Wang MY, and Wei P (2012) “Optimal topology design of continuum structures with stress concentration alleviation via level set method,” International Journal for Numerical Methods in Engineering, vol. DOI: 10.1002/nme.4416

Download references

Acknowledgements

The authors would like to thank the support of National Science Foundation through grants CMMI-1232508 and CMMI-1161474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Suresh, K. Multi-constrained topology optimization via the topological sensitivity. Struct Multidisc Optim 51, 987–1001 (2015). https://doi.org/10.1007/s00158-014-1188-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1188-6

Keywords

Navigation