Skip to main content
Log in

Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Over the past years, many efforts have been accomplished to achieve fast and accurate meta-heuristic algorithms to optimize a variety of real-world problems. This study presents a new optimization method based on an unusual geological phenomenon in nature, named Geyser inspired Algorithm (GEA). The mathematical modeling of this geological phenomenon is carried out to have a better understanding of the optimization process. The efficiency and accuracy of GEA are verified using statistical examination and convergence rate comparison on numerous CEC 2005, CEC 2014, CEC 2017, and real-parameter benchmark functions. Moreover, GEA has been applied to several real-parameter engineering optimization problems to evaluate its effectiveness. In addition, to demonstrate the applicability and robustness of GEA, a comprehensive investigation is performed for a fair comparison with other standard optimization methods. The results demonstrate that GEA is noticeably prosperous in reaching the optimal solutions with a high convergence rate in comparison with other well-known nature-inspired algorithms, including ABC, BBO, PSO, and RCGA. Note that the source code of the GEA is publicly available at https://www.optim-app.com/projects/gea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Data is available from the authors upon reasonable request.

References

  1. Ertenlice, O., & Kalayci, C. B. (2018). A survey of swarm intelligence for portfolio optimization: Algorithms and applications. Swarm and Evolutionary Computation, 39, 36–52. https://doi.org/10.1016/j.swevo.2018.01.009

    Article  Google Scholar 

  2. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  3. Yu, K., Zhang, D., Liang, J., Chen, K., Yue, C., Qiao, K., & Wang, L. (2022). A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2022.3193287

    Article  Google Scholar 

  4. Yu, K., Liang, J., Qu, B., Luo, Y., & Yue, C. (2022). Dynamic selection preference-assisted constrained multiobjective differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(5), 2954–2965. https://doi.org/10.1109/TSMC.2021.3061698

    Article  Google Scholar 

  5. Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

    Article  ADS  Google Scholar 

  6. Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, Nagoya, Japan, pp 39–43.

  8. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE, Washington, DC, USA, pp 1470–1477.

  9. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  Google Scholar 

  10. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  11. Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  12. Alatas, B. (2011). ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Systems with Applications, 38(10), 13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126

    Article  Google Scholar 

  13. Patel, V. K., & Savsani, V. J. (2015). Heat transfer search (HTS): A novel optimization algorithm. Information Sciences, 324, 217–246. https://doi.org/10.1016/j.ins.2015.06.044

    Article  Google Scholar 

  14. Kaveh, A., & Bakhshpoori, T. (2016). Water evaporation optimization: A novel physically inspired optimization algorithm. Computers & Structures, 167, 69–85. https://doi.org/10.1016/j.compstruc.2016.01.008

    Article  Google Scholar 

  15. Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. A. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  16. Punnathanam, V., & Kotecha, P. (2016). Yin-Yang-pair optimization: A novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence, 54, 62–79. https://doi.org/10.1016/j.engappai.2016.04.004

    Article  Google Scholar 

  17. Salmani, M. H., & Eshghi, K. (2017). A metaheuristic algorithm based on chemotherapy science: CSA. Journal of Optimization. https://doi.org/10.1155/2017/3082024

    Article  MathSciNet  Google Scholar 

  18. Kaboli, S. H. A., Selvaraj, J., & Rahim, N. A. (2017). Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems. Journal of Computational Science, 19, 31–42. https://doi.org/10.1016/j.jocs.2016.12.010

    Article  Google Scholar 

  19. Kaveh, A., & Dadras, A. (2017). A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Advances in Engineering Software, 110, 69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  20. Hudaib, A. A., & Fakhouri, H. N. (2018). Supernova optimizer: A novel natural inspired meta-heuristic. Modern Applied Science, 12(1), 32–50. https://doi.org/10.5539/mas.v12n1p32

    Article  Google Scholar 

  21. Ghasemi, M., Ghavidel, S., Aghaei, J., Akbari, E., & Li, L. (2018). CFA optimizer: a new and powerful algorithm inspired by Franklin’s and Coulomb’s laws theory for solving the economic load dispatch problems. International Transactions on Electrical Energy Systems, 28(5), e2536. https://doi.org/10.1002/etep.2536

    Article  Google Scholar 

  22. Ghasemi, M., Zare, M., Zahedi, A., Hemmati, R., Abualigah, L., & Forestiero, A., A comparative study of the coulomb’s and franklin’s laws inspired algorithm (cfa) with modern evolutionary algorithms for numerical optimization. In: Comito, C., Talia, D. (eds) Pervasive Knowledge and Collective Intelligence on Web and Social Media. PerSOM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 494. Springer, Cham. Messina, Italy, 2022, pp 111–124. https://doi.org/10.1007/978-3-031-31469-8_8

  23. Zhao, W., Wang, L., & Zhang, Z. (2019). A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Generation Computer Systems, 91, 601–610. https://doi.org/10.1016/j.future.2018.05.037

    Article  Google Scholar 

  24. Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  25. Akbari, M. A., Zare, M., Azizipanah-abarghooee, R., Mirjalili, S., & Deriche, M. (2022). The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Scientific Reports, 12(1), 10953. https://doi.org/10.1038/s41598-022-14338-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang, J., Qiao, K., Yu, K., Qu, B., Yue, C., Guo, W., & Wang, L. (2022). Utilizing the relationship between unconstrained and constrained pareto fronts for constrained multiobjective optimization. IEEE Transactions on Cybernetics, 53(6), 3873–3886. https://doi.org/10.1109/TCYB.2022.3163759

    Article  Google Scholar 

  27. Zare, M., Ghasemi, M., Zahedi, A., Golalipour, K., Mohammadi, S. K., Mirjalili, S., & Abualigah, L. (2023). A Global Best-guided Firefly Algorithm for Engineering Problems. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00386-2

    Article  Google Scholar 

  28. Yuan, Y., Shen, Q., Wang, S., Ren, J., Yang, D., Yang, Q., Fan, J., & Mu, X. (2023). Coronavirus mask protection algorithm: A new bio-inspired optimization algorithm and its applications. Journal of Bionic Engineering, 20(4), 1747–1765. https://doi.org/10.1007/s42235-023-00359-5

    Article  Google Scholar 

  29. Abualigah, L., Habash, M., Hanandeh, E. S., Hussein, A. M., Shinwan, M. A., Zitar, R. A., & Jia, H. (2023). Improved reptile search algorithm by salp swarm algorithm for medical image segmentation. Journal of Bionic Engineering, 20(4), 1766–1790. https://doi.org/10.1007/s42235-023-00332-2

    Article  Google Scholar 

  30. Wang, C.-Y., & Manga, M. G. (2021). Water and earthquakes (pp. 289–299). Cham: Springer International Publishing.

    Book  Google Scholar 

  31. Rinehart, J.S. (1980). The geologic, thermal, and hydrologic state of the earth. In: Geysers and geothermal energy. Springer-Verlag, New York, pp.24–48.

  32. Rinehart, J.S. (1980). Fundamentals of geyser operation. In: Geysers and geothermal energy, Springer-Verlag, New York, pp.49–77.

  33. Rinehart, J.S. (1980). Practical uses of geothermal fluids. In: Geysers and geothermal energy, Springer-Verlag, New York, pp.175–204.

  34. Chu, S.-C., Tsai, P.-W., & Pan, J.-S. (2006). Cat swarm optimization. In: PRICAI 2006: Trends in Artificial Intelligence: 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, August 7–11, Proceedings 9. Springer, Cham, pp 854–858.

  35. Eusuff, M., Lansey, K., & Pasha, F. (2006). Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Engineering Optimization, 38(2), 129–154.

    Article  MathSciNet  Google Scholar 

  36. Niknam, T., Zare, M., Aghaei, J., & Farsani, E. A. (2011). A new hybrid evolutionary optimization algorithm for distribution feeder reconfiguration. Applied Artificial Intelligence, 25(10), 951–971.

    Article  Google Scholar 

  37. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005005(2005), 2005.

    Google Scholar 

  38. Chen, D., Zou, F., Lu, R., & Wang, P. (2017). Learning backtracking search optimisation algorithm and its application. Information Sciences, 376, 71–94. https://doi.org/10.1016/j.ins.2016.10.002

    Article  Google Scholar 

  39. Ono, I., Kita, H., & Kobayashi, S. (2003). A real-coded genetic algorithm using the unimodal normal distribution crossover. In: Ghosh, A., Tsutsui, S. (eds) Advances in evolutionary computing. Natural Computing Series. Springer, Berlin, pp. 213–237. https://doi.org/10.1007/978-3-642-18965-4_8

  40. Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 15(1), 55–66.

    Article  CAS  Google Scholar 

  41. García-Martínez, C., Lozano, M., Herrera, F., Molina, D., & Sánchez, A. M. (2008). Global and local real-coded genetic algorithms based on parent-centric crossover operators. European Journal of Operational Research, 185(3), 1088–1113.

    Article  Google Scholar 

  42. Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.

    Article  Google Scholar 

  43. Du, Y., Fan, Y., Liu, X., Luo, Y., Tang, J., & Liu, P. (2019). Multiscale cooperative differential evolution algorithm. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2019/5259129

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mallipeddi, R., Suganthan, P. N., Pan, Q.-K., & Tasgetiren, M. F. (2011). Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing, 11(2), 1679–1696.

    Article  Google Scholar 

  45. Qiang, J., Mitchell, C., & Qiang, A. (2016). Tuning of an adaptive unified differential evolution algorithm for global optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, Vancouver, BC, pp.4061–4068. https://doi.org/10.1109/CEC.2016.7744305

  46. Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657.

    Article  Google Scholar 

  47. Lynn, N., & Suganthan, P. N. (2015). Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm and Evolutionary Computation, 24, 11–24.

    Article  Google Scholar 

  48. Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3), 204–210. https://doi.org/10.1109/TEVC.2004.826074

    Article  Google Scholar 

  49. Zhan, Z.-H., Zhang, J., Li, Y., & Shi, Y.-H. (2011). Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 15(6), 832–847. https://doi.org/10.1109/TEVC.2010.2052054

    Article  Google Scholar 

  50. Engelbrecht, A.P. (2010). Heterogeneous particle swarm optimization. In: Swarm Intelligence: 7th International Conference, ANTS 2010, Brussels, Belgium, September 8–10, 2010. Proceedings 7. Springer, Cham, pp. 191–202

  51. Wang, S., Liu, G., Gao, M., Cao, S., Guo, A., & Wang, J. (2020). Heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer with two mutation operators. Information Sciences, 540, 175–201. https://doi.org/10.1016/j.ins.2020.06.027

    Article  MathSciNet  Google Scholar 

  52. Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019). On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Computing and Applications, 31, 7665–7683.

    Article  Google Scholar 

  53. Wu, G., Mallipeddi, R., & Suganthan, P. (2016). Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report. 2017 Sep.

  54. Liang, J., Qu, B., & Suganthan, P. (2014). Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore. 2013 Dec;635(2).

  55. Lei, Z., Gao, S., Gupta, S., Cheng, J., & Yang, G. (2020). An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Systems with Applications, 152, 113396.

    Article  Google Scholar 

  56. Li, W., & Wang, G.-G. (2021). Improved elephant herding optimization using opposition-based learning and K-means clustering to solve numerical optimization problems. Journal of Ambient Intelligence and Humanized Computing, 14(3), 1753–1784. https://doi.org/10.1007/s12652-021-03391-7

    Article  Google Scholar 

  57. Alsalibi, B., Abualigah, L., & Khader, A. T. (2021). A novel bat algorithm with dynamic membrane structure for optimization problems. Applied Intelligence, 51(4), 1992–2017. https://doi.org/10.1007/s10489-020-01898-8

    Article  Google Scholar 

  58. Hu, J., Gui, W., Heidari, A. A., Cai, Z., Liang, G., Chen, H., & Pan, Z. (2022). Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection. Knowledge-Based Systems, 237, 107761. https://doi.org/10.1016/j.knosys.2021.107761

    Article  Google Scholar 

  59. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  60. Iacca, G., dos Santos Junior, V. C., Veloso de Melo, V., de Melo, V. V., & Veloso de Melo, V. (2021). An improved Jaya optimization algorithm with Lévy flight. Expert Systems with Applications, 165, 113902. https://doi.org/10.1016/j.eswa.2020.113902

    Article  Google Scholar 

  61. Wu, Z.-S., Fu, W.-P., & Xue, R. (2015). Nonlinear inertia weighted teaching-learning-based optimization for solving global optimization problem. Computational Intelligence and Neuroscience, 2015, 87. https://doi.org/10.1155/2015/292576

    Article  Google Scholar 

  62. Chen, X., Xu, B., Yu, K., & Du, W. (2018). Teaching-learning-based optimization with learning enthusiasm mechanism and its application in chemical engineering. Journal of Applied Mathematics. https://doi.org/10.1155/2018/1806947

    Article  Google Scholar 

  63. Dai, C., Hu, Z., Li, Z., Xiong, Z., & Su, Q. (2020). An improved grey prediction evolution algorithm based on topological opposition-based learning. IEEE Access, 8, 30745–30762. https://doi.org/10.1109/ACCESS.2020.2973197

    Article  Google Scholar 

  64. Gupta, S., Deep, K., & Engelbrecht, A. P. (2020). A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence, 93, 103718. https://doi.org/10.1016/j.engappai.2020.103718

    Article  Google Scholar 

  65. Gupta, S., & Deep, K. (2019). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050

    Article  Google Scholar 

  66. Tighzert, L., Fonlupt, C., & Mendil, B. (2018). A set of new compact firefly algorithms. Swarm and Evolutionary Computation, 40, 92–115. https://doi.org/10.1016/j.swevo.2017.12.006

    Article  Google Scholar 

  67. Chen, X., Tianfield, H., Mei, C., Du, W., & Liu, G. (2017). Biogeography-based learning particle swarm optimization. Soft Computing, 21(24), 7519–7541. https://doi.org/10.1007/s00500-016-2307-7

    Article  Google Scholar 

  68. Song, P.-C., Chu, S.-C., Pan, J.-S., & Yang, H. (2022). Simplified phasmatodea population evolution algorithm for optimization. Complex & Intelligent Systems, 8(4), 2749–2767. https://doi.org/10.1007/s40747-021-00402-0

    Article  Google Scholar 

  69. Song, P.-C., Chu, S.-C., Pan, J.-S., & Yang, H. (2020). Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine. In: 2020 2nd International Conference on Industrial Artificial Intelligence (IAI). IEEE, Shenyang, China, pp 1–5. https://doi.org/10.1109/IAI50351.2020.9262236

  70. Chen, T., Chen, Y., He, Z., Li, E., Zhang, C., & Huang, Y. (2023). A novel marine predators algorithm with adaptive update strategy. The Journal of Supercomputing, 79(6), 6612–6645. https://doi.org/10.1007/s11227-022-04903-8

    Article  Google Scholar 

  71. Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  72. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  73. Meng, X.-B., Li, H.-X., & Gao, X.-Z. (2019). An adaptive reinforcement learning-based bat algorithm for structural design problems. International Journal of Bio-Inspired Computation, 14(2), 114–124. https://doi.org/10.1504/IJBIC.2019.101639

    Article  Google Scholar 

  74. Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences, 178(15), 3043–3074. https://doi.org/10.1016/j.ins.2008.02.014

    Article  Google Scholar 

  75. Ray, T., & Liew, K. M. (2003). Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  76. Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640. https://doi.org/10.1016/j.asoc.2009.08.031

    Article  Google Scholar 

  77. Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The sailfish optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  78. Zhao, W., Wang, L., & Zhang, Z. (2019). Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization. IEEE Access, 7, 73182–73206. https://doi.org/10.1109/ACCESS.2019.2918753

    Article  Google Scholar 

  79. Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  80. Wang, Y., Cai, Z., Zhou, Y., & Fan, Z. (2009). Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization, 37(4), 395–413. https://doi.org/10.1007/s00158-008-0238-3

    Article  Google Scholar 

  81. Pan, J.-S., Zhang, L.-G., Wang, R.-B., Snášel, V., & Chu, S.-C. (2022). Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Mathematics and Computers in Simulation, 202, 343–373. https://doi.org/10.1016/j.matcom.2022.06.007

    Article  MathSciNet  Google Scholar 

  82. Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  83. dos Santos Coelho, L. (2010). Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Systems with Applications, 37(2), 1676–1683. https://doi.org/10.1016/j.eswa.2009.06.044

    Article  Google Scholar 

  84. Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  85. Coello, C. A. C., Montes, E. M., Coello Coello, C. A., Mezura Montes, E., Coello, C. A. C., & Montes, E. M. (2002). Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3), 193–203. https://doi.org/10.1016/S1474-0346(02)00011-3

    Article  Google Scholar 

  86. He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  87. Huang, F., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation, 186(1), 340–356. https://doi.org/10.1016/j.amc.2006.07.105

    Article  MathSciNet  Google Scholar 

  88. Parsopoulos, K.E., & Vrahatis, M.N. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_71

  89. Brajevic, I. (2015). Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural Computing and Applications, 26(7), 1587–1601. https://doi.org/10.1007/s00521-015-1826-y

    Article  Google Scholar 

  90. Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  91. Coello, C. A. C., & Cortés, N. C. (2004). Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization, 36(5), 607–634. https://doi.org/10.1080/03052150410001704845

    Article  MathSciNet  Google Scholar 

  92. Bernardino, H.S., Barbosa, H.J.C., Lemonge, A.C.C., & Fonseca, L.G. (2008). A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, Hong Kong, pp 1455–1462. https://doi.org/10.1109/CEC.2008.4630985

  93. Mezura-Montes, E., & Hernández-Ocana, B. (2008). Bacterial foraging for engineering design problems: preliminary results. Centro de Investigación en Matemáticas Guanajuato, México

  94. Mezura-Montes, E., & Coello, C. A. C. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 37(4), 443–473. https://doi.org/10.1080/03081070701303470

    Article  MathSciNet  Google Scholar 

  95. Aragón, V. S., Esquivel, S. C., & Coello, C. A. C. (2010). A modified version of a T-Cell algorithm for constrained optimization problems. International Journal for Numerical Methods in Engineering, 84(3), 351–378. https://doi.org/10.1002/nme.2904

    Article  ADS  Google Scholar 

  96. Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  97. Gandomi, A. H., Yang, X.-S., Alavi, A. H., & Talatahari, S. (2013). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22(6), 1239–1255. https://doi.org/10.1007/s00521-012-1028-9

    Article  Google Scholar 

  98. Mazhoud, I., Hadj-Hamou, K., Bigeon, J., & Joyeux, P. (2013). Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism. Engineering Applications of Artificial Intelligence, 26(4), 1263–1273. https://doi.org/10.1016/j.engappai.2013.02.002

    Article  Google Scholar 

  99. Savsani, P., & Savsani, V. (2016). Passing vehicle search (PVS): A novel metaheuristic algorithm. Applied Mathematical Modelling, 40(5–6), 3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  100. Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464–490. https://doi.org/10.1016/j.apm.2018.06.036

    Article  MathSciNet  Google Scholar 

  101. Montemurro, M., Vincenti, A., & Vannucci, P. (2013). The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 256, 70–87. https://doi.org/10.1016/j.cma.2012.12.009

    Article  ADS  MathSciNet  Google Scholar 

  102. Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164. https://doi.org/10.1016/j.asoc.2015.06.056

    Article  Google Scholar 

  103. Chun, S., Kim, Y.-T., & Kim, T.-H. (2013). A diversity-enhanced constrained particle swarm optimizer for mixed integer-discrete-continuous engineering design problems. Advances in Mechanical Engineering, 5, 130750. https://doi.org/10.1155/2013/130750

    Article  Google Scholar 

  104. Brammya, G., Praveena, S., Ninu Preetha, N. S., Ramya, R., Rajakumar, B. R., & Binu, D. (2019). Deer hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm. The Computer Journal. https://doi.org/10.1093/comjnl/bxy133

    Article  Google Scholar 

  105. Ray, T., & Saini, P. (2001). Engineering design optimization using a swarm with an intelligent information sharing among individuals. Engineering Optimization, 33(6), 735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  106. Coello Coello, C. A., & Becerra, R. L. (2004). Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization, 36(2), 219–236. https://doi.org/10.1080/03052150410001647966

    Article  Google Scholar 

  107. Bernardino, H.S., Barbosa, H.J.C., & Lemonge, A.C.C. (2007). A hybrid genetic algorithm for constrained optimization problems in mechanical engineering. In: 2007 IEEE congress on evolutionary computation. IEEE, Singapore, pp. 646–653. https://doi.org/10.1109/CEC.2007.4424532

  108. He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 186(2), 1407–1422. https://doi.org/10.1016/j.amc.2006.07.134

    Article  MathSciNet  Google Scholar 

  109. Mezura-Montes, E., & Coello, C.A.C. (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg, pp. 652–662. https://doi.org/10.1007/11579427_66

  110. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  111. Ghafil, H. N., & Jármai, K. (2020). Dynamic differential annealed optimization: new metaheuristic optimization algorithm for engineering applications. Applied Soft Computing, 93, 106392. https://doi.org/10.1016/j.asoc.2020.106392

    Article  Google Scholar 

  112. Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  113. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  114. Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  115. Dehghani, M., Montazeri, Z., Trojovská, E., & Trojovský, P. (2023). Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259, 110011. https://doi.org/10.1016/j.knosys.2022.110011

    Article  Google Scholar 

  116. Ngo, T. T., Sadollah, A., & Kim, J. H. (2016). A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. Journal of Computational Science, 13, 68–82. https://doi.org/10.1016/j.jocs.2016.01.004

    Article  MathSciNet  Google Scholar 

  117. Akhtar, S., Tai, K., & Ray, T. (2002). A socio-behavioural simulation model for engineering design optimization. Engineering Optimization, 34(4), 341–354. https://doi.org/10.1080/03052150212723

    Article  Google Scholar 

  118. Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7–21. https://doi.org/10.1016/j.aei.2005.09.001

    Article  Google Scholar 

  119. Hedar, A.-R., & Fukushima, M. (2006). Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of Global optimization, 35(4), 521–549. https://doi.org/10.1007/s10898-005-3693-z

    Article  MathSciNet  Google Scholar 

  120. Zhang, J., Liang, C., Huang, Y., Wu, J., & Yang, S. (2009). An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Applied Mathematics and Computation, 211(2), 392–416. https://doi.org/10.1016/j.amc.2009.01.048

    Article  MathSciNet  Google Scholar 

  121. He, S., Prempain, E., & Wu, Q. H. (2004). An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization, 36(5), 585–605. https://doi.org/10.1080/03052150410001704854

    Article  MathSciNet  Google Scholar 

  122. Dehghani, M., Hubalovsky, S., & Trojovsky, P. (2021). Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems. IEEE Access, 9, 162059–162080. https://doi.org/10.1109/ACCESS.2021.3133286

    Article  Google Scholar 

  123. Liang, J., Ban, X., Yu, K., Qu, B., Qiao, K., Yue, C., Chen, K., & Tan, K. C. (2022). A survey on evolutionary constrained multiobjective optimization. IEEE Transactions on Evolutionary Computation, 27(2), 201–221. https://doi.org/10.1109/TEVC.2022.3155533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Zare or Laith Abualigah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Portion of Exploration and Exploitation

Appendix A: Portion of Exploration and Exploitation

The following equations should be implemented to determine the proportion of exploitation and exploration processes within evolutionary algorithms and the level of population diversity [52].

Suppose the size of the initial population is Npop and the number of decision variables is D:

$${{\varvec{X}}}_{{\varvec{j}}}=[{x}_{1,j}, {x}_{2,j}, \dots , {x}_{Npop,j}] \forall \mathrm{j}\hspace{0.17em}=\hspace{0.17em}\mathrm{1,2}, \dots ,\mathrm{ D}$$
(41)
$${K}_{j}=median({{\varvec{X}}}_{j}) \forall \mathrm{j}\hspace{0.17em}=\hspace{0.17em}\mathrm{1,2}, \dots ,\mathrm{ D}$$
(42)

Xj is a vector that contains all the jth variables of all population. Now the following two parameters can be calculated.

$${dv}_{j}={\sum }_{i=1}^{Npop}{K}_{j}-{x}_{i,j} \forall \mathrm{j}\hspace{0.17em}=\hspace{0.17em}\mathrm{1,2}, \dots ,\mathrm{ D}$$
(43)
$$DV=\frac{1}{D}{\sum }_{j=1}^{D}{dv}_{j}$$
(44)

\({x}_{i,j}\) is the jth variable of ith population. \(DV\) is the average of diversity.

$$\%Pl=\frac{DV}{DV\_max}\times 100$$
(45)
$$\mathrm{\%}Pt=\frac{\left|DV-DV\_max\right|}{DV\_max}\times 100$$
(46)

DV is the population diversity in each iteration and DV_max is the maximum diversity between all iterations. %Pl and %Pt are the percentage of exploration and exploitation corresponding to each iteration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Zare, M., Zahedi, A. et al. Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization. J Bionic Eng 21, 374–408 (2024). https://doi.org/10.1007/s42235-023-00437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00437-8

Keywords

Navigation