Skip to main content

Advertisement

Log in

R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 23 March 2023

This article has been updated

Abstract

Key Message

SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels.

Abstract

Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study can be freely accessed by any researcher wishing to use them for non-commercial purposes. Na Sui (suina@sdnu.edu.cn) can be reached for any data-related requests in accordance with the policy described in the Instructions for Authors (www.springer.com).

Change history

References

  • Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, Owiti J, Lemaux PG (2021) Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnol J 20:748–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo M-C, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL (2016) FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28:2291–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belton PS, Taylor JRN (2004) Sorghum and millets: protein sources for Africa. Trends Food Sci Technol 15:94–98

    Article  CAS  Google Scholar 

  • Boyles RE, Brenton ZW, Kresovich S (2019) Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Plant J 97:19–39

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Wang G, Wang L, Liu Y, Pan J, Li D (2014) A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. J Plant Physiol 171:1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran U, Luo X, Zhou W, Shu K (2020) Multifaceted signaling networks mediated by abscisic acid insensitive 4. Plant Commun 1:100040

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in <em>Arabidopsis</em>. Proc Natl Acad Sci USA 113:E5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Liu X, Tran L-SP, Zhou X, Cao D (2021) Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol J 19:702–716

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Do PT, Lee H, Mookkan M, Folk WR, Zhang ZJ (2016) Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Rep 35:2065–2076

    Article  CAS  PubMed  Google Scholar 

  • Du X-Q, Wang F-L, Li H, Jing S, Yu M, Li J, Wu W-H, Kudla J, Wang Y (2019) The transcription factor MYB59 regulates K+/NO3− translocation in the arabidopsis response to low K+ stress. Plant Cell 31:699–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ev Z, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I Occurrence in Higher Plants 59:309–314

    CAS  Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90:898–917

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L-SP (2020) Altering plant architecture to improve performance and resistance. Trends Plant Sci 25:1154–1170

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Zhou L-J, Gao H-N, Wang X-F, Li Z-W, Li Y-Y (2022) The Transcription Factor MdMYB2 Influences Cold Tolerance and Anthocyanin Accumulation by Activating SUMO E3 Ligase MdSIZ1 in Apple. Plant Physiol:kiac211

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23:513–522

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cai H, Liu P, Wang C, Gao H, Wu C, Yan K, Zhang S, Huang J, Zheng C (2017) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Bioph Res Co 484:292–297

    Article  CAS  Google Scholar 

  • Li B, Fan R, Guo S, Wang P, Zhu X, Fan Y, Chen Y, He K, Kumar A, Shi J, Wang Y, Li L, Hu Z, Song C-P (2019) The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ Exp Bot 166:103807

    Article  CAS  Google Scholar 

  • Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lv J (2020) A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Sci 299:110613

    Article  CAS  PubMed  Google Scholar 

  • Li H, Testerink C, Zhang Y (2021) How roots and shoots communicate through stressful times. Trends Plant Sci 26:940–952

    Article  CAS  PubMed  Google Scholar 

  • Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J (2022) Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis and shoot development and stress response in tea plants (Camellia sinensis). Plant J n/a

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Poss JA (1989) Salt sensitivity of cowpea at various growth stages. Irrig Sci 10:313–320

    Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    Article  PubMed  Google Scholar 

  • Matsuoka D, Nanmori T, Sato K-i, Fukami Y, Kikkawa U, Yasuda T (2002) Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J 29:637–647

    Article  CAS  PubMed  Google Scholar 

  • Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W (2014) Energy sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot 65:3479–3489

    Article  PubMed  Google Scholar 

  • Niknam SR, McComb J (2000) Salt tolerance screening of selected Australian woody species — a review. For Ecol Manage 139:1–19

    Article  Google Scholar 

  • De la Osa C, Pérez-López J, Feria A-B, Baena G, Marino D, Coleto I, Pérez-Montaño F, Gandullo J, Echevarría C, García-Mauriño S, Monreal JA (2022) Knock-down of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (Sorghum bicolor L.). Plant J n/a

  • Pan W, Zheng P, Zhang C, Wang W, Li Y, Fan T, Liu Y, Cao S (2020) The effect of ABRE BINDING FACTOR 4-mediated FYVE1 on salt stress tolerance in Arabidopsis. Plant Sci 296:110489

    Article  CAS  PubMed  Google Scholar 

  • Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A, Amini A (2021) Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull National Res Centre 45:117

    Article  Google Scholar 

  • Proietti I, Frazzoli C, Mantovani A (2015) Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum. Healthcare 3

  • Saluja M, Zhu F, Yu H, Walia H, Sattler SE (2021) Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. New Phytolt 229:2780–2794

    Article  CAS  Google Scholar 

  • Sánchez-Duarte JI, Kalscheur KF, García AD, Contreras-Govea FE (2019) Short communication: Meta-analysis of dairy cows fed conventional sorghum or corn silages compared with brown midrib sorghum silage. J Dairy Sci 102:419–425

    Article  PubMed  Google Scholar 

  • Shi X, Xiong J, Yang X, Siddique KHM, Du T (2022) Carbon footprint analysis of sweet sorghum-based bioethanol production in the potential saline - Alkali land of northwest China. J Clean Prod 349:131476

    Article  CAS  Google Scholar 

  • Song Y, Yang W, Fan H, Zhang X, Sui N (2020) TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. Plant Sci 300:110624

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N (2022a) SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. Theor Appl Genet 135:201–216

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Zheng H, Sui Y, Li S, Wu F, Sun X, Sui N (2022b) SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling. Theor Appl Genet 135:2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Sui N, Yang Z, Liu M, Wang B (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genom 16:534

    Article  Google Scholar 

  • Sun Y, Zhao J, Li X, Li Y (2020) E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytolt 227:455–472

    Article  CAS  Google Scholar 

  • Tang C-C, Yang X-L, Xie G-H (2018) Establishing sustainable sweet sorghum-based cropping systems for forage and bioenergy feedstock in North China Plain. Field Crop Res 227:144–154

    Article  Google Scholar 

  • TingLi, NathalieGonzalez, DirkInzé, MariekeDubois (2020) Emerging Connections between Small RNAs and Phytohormones. Trends Plant Sci

  • Ullah A, Ul Qamar MT, Nisar M, Hazrat A, Rahim G, Khan AH, Hayat K, Ahmed S, Ali W, khan A, Yang X, (2020) Characterization of a novel cotton MYB gene, GhMYB108-like responsive to abiotic stresses. Mol Biol Rep 47:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, Madera M, Jeffers T, Hollingsworth J, Sievert J, Yoshinaga Y, Owiti JA, Singan VR, DeGraaf S, Xu L, Blow MJ, Harrison MJ, Visel A, Jansson C, Niyogi KK, Hutmacher R, Coleman-Derr D, O’Malley RC, Taylor JW, Dahlberg J, Vogel JP, Lemaux PG, Purdom E (2019) Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc Natl Acad Sci USA 116:27124–27132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T (2011) Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crop Res 120:38–46

    Article  Google Scholar 

  • Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song C-P, Wang B, Yang S, Zhu J-K, Gong Z (2018) EAR1 negatively regulates ABA signaling by Enhancing 2C protein phosphatase activity. Plant Cell 30:815–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Yu F, Xie Q (2020) Balancing growth and adaptation to stress: crosstalk between brassinosteroid and abscisic acid signaling. Plant Cell Environ 43:2325–2335

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B (2019) Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Phys Bioch 137:179–188

    Article  CAS  Google Scholar 

  • Xie Q, Xu Z (2019) Sustainable agriculture: from sweet sorghum planting and ensiling to ruminant feeding. Mol Plant 12:603–606

    Article  CAS  PubMed  Google Scholar 

  • Xie P, Tang S, Chen C, Zhang H, Yu F, Li C, Wei H, Sui Y, Wu C, Diao X, Wu Y, Xie Q (2022) Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat Commun 13:1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson Kim K, Kim Y-M, Zink Erika M, Engbrecht Kristin M, Wang Y, Gao C, DeGraaf S, Madera Mary A, Sievert Julie A, Hollingsworth J, Birdseye D, Scheller Henrik V, Hutmacher R, Dahlberg J, Jansson C, Taylor John W, Lemaux Peggy G, Coleman-Derr D (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA 115:E4284–E4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zheng H, Wei X, Song J, Wang B, Sui N (2018) Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant Soil 430:423–439

    Article  CAS  Google Scholar 

  • Yang Z, Li J-L, Liu L-N, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci:1722

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Pan J, Kong X, Zhou Y, Liu Y, Sun L, Li D (2012) ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. J Plant Physiol 169:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Y, Zhu J-K (2020a) Thriving under stress: how plants balance growth and the stress Response. Dev Cell 55:529–543

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang R, Yang X, Ju Q, Li W, Lü S, Tran L-SP, Xu J (2020b) The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ 43:1925–1943

    Article  PubMed  Google Scholar 

  • Zheng H, Sun X, Li J, Song Y, Song J, Wang F, Liu L, Zhang X, Sui N (2021) Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Sci 304:110801

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are grateful for the financial support from the National Natural Science Research Foundation of China (31871538 and U1906204), the National Key R&D Program of China (2018YFD1000700 and 2018YFD1000704), the Development Plan for Youth Innovation Team of Shandong Province (2019KJE012), the Shandong Province Key Research and Development Program (2019GSF107079), and the Science and Technology Demonstration Project of “Bohai Granary” of Shandong Province (2019BHLC002).

Author information

Authors and Affiliations

Authors

Contributions

HZ, XD, and NS initiated the manuscript preparation. YS performed the transformation of sorghum. HZ, YG, YD, FW, XW, and FZ performed the experiments. NS conceptualized the idea and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xihua Du or Na Sui.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Ian D Godwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Gao, Y., Sui, Y. et al. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. Theor Appl Genet 136, 5 (2023). https://doi.org/10.1007/s00122-023-04292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04292-3

Navigation