Skip to main content
Log in

Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The powdery mildew resistance locus was mapped to A. cristatum chromosome 6PL bin (0.27–0.51) and agronomic traits evaluation indicated that this locus has potential breeding application value.

Abstract

Agropyron cristatum (2n = 4x = 28, PPPP) is a wild relative of wheat with an abundance of biotic and abiotic stress resistance genes and is considered one of the best exogenous donor relatives for wheat breeding. A number of wheat-A. cristatum derived lines have been generated, including addition lines, translocation lines and deletion lines. In this study, the 6P disomic addition line 4844-12 (2n = 2x = 44) was confirmed to have genetic effects on powdery mildew resistance. Four 6P deletion lines (del16a, del19b, del21 and del27) and two translocation lines (WAT638a and WAT638b), derived from radiation treatment of 4844-12, were used to further assess the 6P powdery mildew resistance locus by powdery mildew resistance assessment, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and 6P specific sequence-tagged-site (STS) markers. Collectively, the locus harboring the powdery mildew resistance gene was genetically mapped to a 6PL bin (0.27–0.51). The genetic effects of this chromosome segment on resistance to powdery mildew were further confirmed by del16a and del27 BC3F2 lines. Comprehensive evaluation of agronomic traits revealed that the powdery mildew resistance locus of 6PL (0.27–0.51) has potential application value in wheat breeding. A total of 22 resistant genes were annotated and 3 specific gene markers were developed for detecting chromatin of the resistant region based on genome re-sequencing. In summary, this study could broaden the powdery mildew resistance gene pool for wheat genetic improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • An D, Ma P, Zheng Q, Fu S, Li L, Han F, Han G, Wang J, Xu Y, Jin Y, Luo Q, Zhang X (2019) Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet 132:257–272

    Article  CAS  PubMed  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copete A, Cabrera A (2017) Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica 213:1–9

    Article  CAS  Google Scholar 

  • Dai K, Zhao R, Shi M, Xiao J, Yu Z, Jia Q, Wang Z, Yuan C, Sun H, Cao A, Zhang R, Chen P, Li Y, Wang H, Wang X (2020) Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet 133:217–226

    Article  CAS  PubMed  Google Scholar 

  • Dinu M, Whittaker A, Pagliai G, Benedettelli S, Sofi F (2018) Ancient wheat species and human health: biochemical and clinical implications. J Nutr Biochem 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zhou R, Xu S, Li L, Cauderon Y, Wang R (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Article  Google Scholar 

  • Han H, Liu W, Lu Y, Zhang J, Yang X, Li X, Hu Z, Li L (2017) Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta 245:425–437

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D (2018) Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci 9:1040

    Article  PubMed  PubMed Central  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • He H, Ji J, Li H, Tong J, Feng Y, Wang X, Han R, Bie T, Liu C, Zhu S (2020) Genetic diversity and evolutionary analyses reveal the powdery mildew resistance gene Pm21 undergoing diversifying selection. Front Genet 11:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Liu R, Ma P, Du H, Zhang H, Wu Q, Yang L, Gong S, Liu T, Huo N, Gu YQ, Zhu S (2021) Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796. Theor Appl Genet 134:53–62

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Liu T, Li H, Han H, Li L, Zhang J, Yang X, Zhou S, Li X, Liu W (2018) Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front Plant Sci 9:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Xue F, Zhou Y, Duan X, Hu J, Li Y, Zhu H, Sun J (2020) Fine-mapping of the powdery mildew resistance gene mlxbd in the common wheat landrace xiaobaidong. Plant Dis 104:1231–1238

    Article  PubMed  Google Scholar 

  • Lazaridou TB, Pankou CI, Xynias IN, Roupakias DG (2017) Effect of the 1BL.1RS wheat-rye translocation on the androgenic response in spring bread wheat. Cytol Genet 51:485–490

    Article  Google Scholar 

  • Li H, Jiang B, Wang J, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2017) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:109–121

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo DH, Friebe B, Ma P, Liu W (2020) A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. Theor Appl Genet 133:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Luo Q, Li H, Li B, Li Z, Zheng Q (2018) Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131:2359–2370

    Article  PubMed  Google Scholar 

  • Lu Y, Yao M, Zhang J, Song L, Liu W, Yang X, Li X, Li L (2016) Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. Planta 244:713–723

    Article  PubMed  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Maag JLV (2018) gganatogram: an R package for modular visualisation of anatograms and tissues based on ggplot2. F1000 Res 7:1576

    Article  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from “Amigo” and “Kavkaz” wheat-rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Zhang P, Cowger C, Parks R, Lagudah ES, Hoxha S (2011) Rye-derived powdery mildew resistance gene Pm3 in wheat is suppressed by the Pm3 locus. Theor Appl Genet 123:359–367

    Article  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Oliva A, Tobler R, Llamas B, Souilmi Y (2021) Additional evaluations show that specific BWA-aln settings still outperform BWA-mem for ancient DNA data alignment. Ecol Evol 11:18743–18748

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan C, Li Q, Lu Y, Zhang J, Yang X, Li X, Li L, Liu W (2017) Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P. PLoS ONE 12:e0175265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai A, Ahlawat AK, Shukla RB, Jain N, Kumar RR, Mahendru-Singh A (2021) Quality evaluation of near-isogenic line of the wheat variety HD2733 carrying the Lr24/Sr24 genomic region. 3 Biotech 11:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng BQ, Duan XY (1991) Modification on the evaluation methods of 0–9 level of powdery mildew infection on wheat. Biotech J Agric Sci 9:37–39

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jorgensen LN, Hovmoller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B (2018) Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 98:249–260

    Article  CAS  PubMed  Google Scholar 

  • Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From fastq data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform 43:11–10

    Article  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies fusarium head blight resistance in wheat. Science 368:eaba5435

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Long D, Wang Y, Wang C, Liu X, Zhang H, Tian Z, Chen C, Ji W (2020) Characterization and evaluation of resistance to powdery mildew of wheat-Aegilops geniculata Roth 7M(g) (7A) alien disomic substitution line W16998. Int J Mol Sci 21:1861

    Article  CAS  PubMed Central  Google Scholar 

  • Wiersma AT, Pulman JA, Brown LK, Cowger C, Olson EL (2017) Identification of Pm58 from Aegilops tauschii. Theor Appl Genet 130:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM, Barker GL, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N, Bevan MW, Richmond T, Gerhardt DJ, Jeddeloh JA, Edwards KJ (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Bian Q, Gao Y, Ni X, Sun Y, Xuan Y, Cao Y, Li T (2021) Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ 9:e10425

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang J, Liu W, Wu X, Yang X, Li X, Lu Y, Li L (2016a) An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta 244:853–864

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Sun B, Chen J, Cao A, Xing L, Feng Y, Lan C, Chen P (2016b) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu W, Lu Y, Liu Q, Yang X, Li X, Li L (2017a) A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Sci Rep 7:11942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Song L, Han H, Zhou S, Zhang J, Yang X, Li X, Liu W, Li L (2017b) Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int J Mol Sci 18:2403

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang R, Fan Y, Kong L, Wang Z, Wu J, Xing L, Cao A, Feng Y (2018) Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet 131:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Han H, Liu W, Song L, Zhang J, Zhou S, Yang X, Li X, Li L (2019) Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theor Appl Genet 132:2815–2827

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Xiong C, Mu H, Yao R, Meng X, Kong L, Xing L, Wu J, Feng Y, Cao A (2021) Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J 9:882–888

    Article  Google Scholar 

  • Zhu C, Wang Y, Chen C, Wang C, Zhang A, Peng N, Wang Y, Zhang H, Liu X, Ji W (2017) Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance. Genome 60:860–867

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Wheat Resource Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences.

Funding

This research was funded by National Science Foundation of China (31801359) and the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021-ICS). National Aerospace Science Foundation of China, 31801359, Shenghui Zhou.

Author information

Authors and Affiliations

Authors

Contributions

LHL conceived the research. YDL performed the research. YDL and SHZ wrote the paper. BH and XZL participated in part of cytology work. BJG, HMH, JPZ, YQL, ZZ, XMY, XQL and WHL participated in the preparation of the reagents and materials used in this study.

Corresponding author

Correspondence to Lihui Li.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Available of data and material

Data supporting the current study can be obtained by contacting the corresponding authors.

Code availability

Not applicable.

Additional information

Communicated by Reem Aboukhaddour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yida Lin and Shenghui Zhou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhou, S., Liang, X. et al. Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat. Theor Appl Genet 135, 2861–2873 (2022). https://doi.org/10.1007/s00122-022-04155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04155-3

Navigation