Skip to main content
Log in

Chromosomal mapping of a major genetic locus from Agropyron cristatum chromosome 6P that influences grain number and spikelet number in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel locus on Agropyron cristatum chromosome 6P that increases grain number and spikelet number was identified in wheat–A. cristatum derivatives and across 3 years.

Abstract

Agropyron cristatum (2n = 4x = 28, PPPP), which has the characteristics of high yield with multiple flowers and spikelets, is a promising gene donor for wheat high-yield improvement. Identifying the genetic loci and genes that regulate yield could elucidate the genetic variations in yield-related traits and provide novel gene sources and insights for high-yield wheat breeding. In this study, cytological analysis and molecular marker analysis revealed that del10a and del31a were wheat–A. cristatum chromosome 6P deletion lines. Notably, del10a carried a segment of the full 6PS and 6PL bin (1–13), while del31a carried a segment of the full 6PS and 6PL bin (1–8). The agronomic characterization and genetic population analysis confirmed that the 6PL bin (9–13) brought about an increase in grain number per spike (average increase of 10.43 grains) and spikelet number per spike (average increase of 3.67) over the three growing seasons. Furthermore, through resequencing, a multiple grain number locus was mapped to the physical interval of 593.03–713.89 Mb on chromosome 6P of A. cristatum Z559. The RNA-seq analysis revealed the expression of 537 genes in the del10a young spike tissue, with the annotation indicating that 16 of these genes were associated with grain number and spikelet number. Finally, a total of ten A. cristatum-specific molecular markers were developed for this interval. In summary, this study presents novel genetic material that is useful for high-yield wheat breeding initiatives to meet the challenge of global food security through enhanced agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GNS:

Grain number per spike

SNS:

Spikelet number per spike

FFNS:

Fertile floret number per spikelet

TGW:

Thousand-grain weight

GISH:

Genomic in situ hybridization

FISH:

Fluorescence in situ hybridization

References

  • An D, Zheng Q, Luo Q, Ma P, Zhang H, Li L, Han F, Xu H, Xu Y, Zhang X, Zhou Y (2015) Molecular cytogenetic identification of a new wheat–rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE 10:e0134534

    Article  PubMed  PubMed Central  Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Jean Finnegan E, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plants 1:14016

    Article  CAS  PubMed  Google Scholar 

  • Calderini DF, Castillo FM, Arenas-M A, Molero G, Reynolds MP, Craze M, Bowden S, Milner MJ, Wallington EJ, Dowle A, Gomez LD, McQueen-Mason SJ (2020) Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytol 230:629–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Carra A, Gambino G, Schubert A (2007) A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal Biochem 360:318–320

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Armstrong K (1994) Genomic in situ hybridization in Avena sativa. Genome 37:607–612

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:884–890

    Article  Google Scholar 

  • Duan J, Wu Y, Zhou Y, Ren X, Shao Y, Feng W, Zhu Y, Wang Y, Guo T (2018) Grain number responses to pre-anthesis dry matter and nitrogen in improving wheat yield in the Huang-Huai Plain. Sci Rep 8:7126

    Article  PubMed  PubMed Central  Google Scholar 

  • Farashi A, Karimian Z (2021) Assessing climate change risks to the geographical distribution of grass species. Plant Signal Behav 16:e1913311

    Article  Google Scholar 

  • Glenn P, Woods DP, Zhang J, Gabay G, Odle N, Dubcovsky J (2023) Wheat bZIPC1 interacts with FT2 and contributes to the regulation of spikelet number per spike. Theor Appl Genet 136:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Shi Q, Liu Y, Su H, Zhang J, Wang M, Wang C, Wang J, Zhang K, Fu S, Hu X, Jing D, Wang Z, Li J, Zhang P, Liu C, Han F (2023) Systemic development of wheat–Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J 114:1475–1489

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson EK, Zhang D, Reynolds RH, Garcia-Ruiz S, Ryten M, Mathelier A (2022) ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics 38:3844–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackauf B, Siekmann D, Fromme FJ (2022) Improving yield and yield stability in winter rye by hybrid breeding. Plants 11:2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Gao Z, Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21:1929–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci 103:3238–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han G, Liu S, Wang J, Jin Y, Zhou Y, Luo Q, Liu H, Zhao H, An D (2020) Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis 104:2940–2948

    Article  CAS  PubMed  Google Scholar 

  • Han H, Liu W, Lu Y, Zhang J, Yang X, Li X, Hu Z, Li L (2016) Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta 245:425–437

    Article  PubMed  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • Houtgast EJ, Sima V-M, Bertels K, Al-Ars Z (2018) Hardware acceleration of BWA-MEM genomic short read mapping for longer read lengths. Comput Biol Chem 75:54–64

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Liu T, Li H, Han H, Li L, Zhang J, Yang X, Zhou S, Li X, Liu W (2018) Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front Plant Sci 9:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Jiang B, Wang J, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016) Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130:109–121

    Article  PubMed  Google Scholar 

  • Li L, Yang X, Li X, Dong Y, Chen X (1998) Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agricult Sin 31:1–6

    CAS  Google Scholar 

  • Li T, Deng G, Tang Y, Su Y, Wang J, Cheng J, Yang Z, Qiu X, Pu X, Zhang H, Liang J, Yu M, Wei Y, Long H (2021) Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci 12:611106

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li B, Tong Y (2008) The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genom 35:451–456

    Article  Google Scholar 

  • Lin Y, Zhou S, Liang X, Guo B, Han B, Han H, Zhang J, Lu Y, Zhang Z, Yang X, Li X, Liu W, Li L (2022) Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat. Theor Appl Genet 135:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Zhou S, Liang X, Han B, Yang J, Guo B, Zhang J, Han H, Liu W, Yang X, Li X, Li L (2023) Introgression of chromosome 6PL terminal segment from Agropyron cristatum to increase both grain number and grain weight in wheat. Crop J 11:878–886

    Article  Google Scholar 

  • Liu L, Luo Q, Li H, Li B, Li Z, Zheng Q (2018) Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131:2359–2370

    Article  PubMed  Google Scholar 

  • Ma P, Han G, Zheng Q, Liu S, Han F, Wang J, Luo Q, An D (2020) Development of novel wheat–rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Dis 104:260–268

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat–rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Smith D (2019) Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol 39:999–1014

    Article  CAS  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci 116:5182–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider A, Rakszegi M, Molnár-Láng M, Szakács É (2016) Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor Appl Genet 129:1045–1059

    Article  CAS  PubMed  Google Scholar 

  • Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W (2013) Efficient induction of Wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE 8:e69501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016a) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016b) Cytological and molecular analysis of wheat–Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome 59:840–850

    Article  PubMed  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling H-Q, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K (2022) Wheat genomic study for genetic improvement of traits in China. Sci China Life Sci 65:1718–1775

    Article  PubMed  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in Wheat. Mol Plant 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Boshoff WHP, Li H, Pretorius ZA, Luo Q, Li B, Li Z, Zheng Q (2021a) Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat–Thinopyrum ponticum translocation line WTT34. Theor Appl Genet 134:1587–1599

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Deng P, Ji W, Fu S, Li H, Li B, Li Z, Zheng Q (2023) Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front Plant Sci 14:1131205

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Tong C, Li H, Li B, Li Z, Zheng Q (2022) Cytogenetic identification and molecular marker development of a novel wheat–Thinopyrum ponticum translocation line with powdery mildew resistance. Theor Appl Genet 135:2041–2057

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Zheng Q, Hu P, Li H, Luo Q, Li B, Li Z (2021b) Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat–Thinopyrum intermedium translocation line WTT11. aBIOTECH 2:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    Article  CAS  Google Scholar 

  • Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan CC, Hua W, Liu Z, Chen C, Carver BF, Yan L (2022) TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376:180–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Huang L, Gao A, Zhang J, Yang X, Liu W, Li X, Li L (2015) A high-density genetic map for P genome of Agropyron Gaertn. Based on specific-locus amplified fragment sequencing (SLAF-seq). Planta 242:1335–1347

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Han H, Liu W, Song L, Zhang J, Zhou S, Yang X, Li X, Li L (2019) Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theor Appl Genet 132:2815–2827

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2021YFD1200600).

Author information

Authors and Affiliations

Authors

Contributions

LHL conceived the research. YDL performed the research. YDL and SHZ wrote the paper. WJY modified some pictures. BH, XZL and YXZ participated in part of the data collection and cytology work. JPZ, HMH, BJG, XMY, XQL and WHL participated in the preparation of the reagents and materials used in this study.

Corresponding author

Correspondence to Lihui Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Communicated by Peter Langridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 35 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhou, S., Yang, W. et al. Chromosomal mapping of a major genetic locus from Agropyron cristatum chromosome 6P that influences grain number and spikelet number in wheat. Theor Appl Genet 137, 82 (2024). https://doi.org/10.1007/s00122-024-04584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04584-2

Navigation