Skip to main content
Log in

Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped.

Abstract

Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC1F2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66–0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An DG, Zheng Q, Zhou YL, Ma PT, Lv ZL, Li LH, Li B, Luo QL, Xu HX, Xu YF (2013) Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res 21:419–432

    Article  CAS  PubMed  Google Scholar 

  • Asay K, Johnson D (1990) Genetic variances for forage yield in crested wheatgrass at six levels of irrigation. Crop Sci 30:79–82

    Article  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci 108:7727–7732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Shi AN, Shang LM, Leath S, Murphy JP (1997) The resistance reaction of H. villosa to powdery mildew isolates and its expression in wheat background. Acta Phytopathol Sin 27:17–22

    Google Scholar 

  • Chen PD, You CF, Hu Y, Chen SW, Zhou B, Cao AZ, Wang XE (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    Article  CAS  Google Scholar 

  • Costanzo A, Bàrberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 209–279

    Chapter  Google Scholar 

  • Dong YC, Zhou RH, Xu SJ, Li LH, Cauderon Y, Wang RRC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Article  Google Scholar 

  • Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J (2013) Molecular cytogenetic identification of a wheat-Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed 31:879–888

    Article  Google Scholar 

  • Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J (2014) Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta 239:97–105

    Article  CAS  PubMed  Google Scholar 

  • Duan XY, Sheng BQ, Zhou YL, Xiang QJ (1998) Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophylac Sin 25:31–36

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Article  Google Scholar 

  • Han FP, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han HM, Bai L, Su JJ, Zhang JP, Song LQ, Gao AN, Yang XM, Li XQ, Liu WH, Li LH (2014) Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One 9:e91066

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao YF, Parks R, Cowger C, Chen ZB, Wang YY, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476

    Article  CAS  PubMed  Google Scholar 

  • He ZH, Xia XC, Chen XM, Zhuang QS (2011) Progress of wheat breeding in China and the future perspective. Acta Agro Sin 37:202–215

    Article  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Baenziger P, Yamazaki W, Smith R (1979) Effects of powdery mildew on yield and quality of isogenic lines of ‘Chancellor’ wheat. Crop Sci 19:349–352

    Article  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. Plant genomes: methods for genetic and physical mapping. Springer, Berlin, pp 1–13

    Book  Google Scholar 

  • Kim NS, Armstrong K, Fedak G, Fominaya A, Whelan E (1993) Cytological and molecular characterization of a chromosome interchange and addition lines in Cadet involving chromosome 5B of wheat and 6Ag of Lophopyrum ponticum. Theor Appl Genet 86:827–832

    Article  CAS  PubMed  Google Scholar 

  • Li LH (1991) Producion and cytogenetic study of intergeneric hybirds of Triticum aestivum L. with Agropyron desertorum (Fisch.) Schult. and Agropyron michnoi Roshev. Sci Agric Sin 24:1–10

    Google Scholar 

  • Li LH (1995) Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Chin J Genet 22:105–112

    Google Scholar 

  • Li LH, Li XQ, Li P, Dong YC, Zhao GS (1997) Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F3, F2BC1, BC4, and BC3F1 progenies. Acta Genet Sin 24:154–159

    CAS  Google Scholar 

  • Li LH, Yang XM, Zhou RH, Li XQ, Dong YC (1998) Establishment of wheat-Agropyron cristatum alien addition lines. II. Identification of alien chromosomes and analysis of development approaches. Acta Genet Sin 25:538–544

    Google Scholar 

  • Li HH, Lv MJ, Song LQ, Zhang JP, Gao AN, Li LH, Liu WH (2016a) Production and identification of wheat-Agropyron cristatum 2P translocation lines. PLoS One 11:e0145928

    Article  PubMed  PubMed Central  Google Scholar 

  • Li QF, Lu YQ, Pan CL, Zhang JP, Liu WH, Yang XM, Li XQ, Xi YJ, Li LH (2016b) Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci. doi:10.2135/cropsci2015.10.0638

    Google Scholar 

  • Limin A, Fowler D (1990) An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33:581–584

    Article  Google Scholar 

  • Limpert E, Felsenstein F, Andrivon D (1987) Analysis of virulence in populations of wheat powdery mildew in Europe. J Phytopathol 120:1–8

    Article  Google Scholar 

  • Liu SB, Wang HG (2005) Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica 143:229–233

    Article  Google Scholar 

  • Liu WH, Luan Y, Wang JC, Wang XG, Su J, Zhang JJ, Zhang JP, Yang XM, Gao AN, Li LH (2010) Production and identification of wheat-Agropyron cristatum (1.4P) alien translocation lines. Genome 53:472–481

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO (2013) Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Lu YQ, Wu XY, Yao MM, Zhang JP, Liu WH, Yang XM, Li XQ, Du J, Gao AN, Li LH (2015) Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Mol Breed 35:1–13

    Article  Google Scholar 

  • Lu YQ, Yao MM, Zhang JP, Song LQ, Liu WH, Yang XM, Li XQ, Li LH (2016) Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. Planta. doi:10.1007/s00425-016-2538-y

    PubMed Central  Google Scholar 

  • Ma PT, Xu HX, Luo QL, Qie YM, Zhou YL, Xu YF, Han HM, Li LH, An DG (2014) Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2. Euphytica 200:149–157

    Article  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Ann Rev Phytopathol 40:349–379

    Article  CAS  Google Scholar 

  • McIntosh RA, Zhang P, Cowger C, Parks R, Lagudah ES, Hoxha S (2011) Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theor Appl Genet 123:359–367

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2014) Catalogue of gene symbols for wheat: 2013–2014 supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. Accessed 4 Apr 2014

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Payne TS, Sonder K, Mclntosh R (2012) Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol 132:323–340

    Article  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Mullan DJ, Mirzaghaderi G, Walker E, Colmer TD, Francki MG (2009) Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor Appl Genet 119:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201:89–95

    Article  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown-Guedira G, Murphy JP (2014) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 128:303–312

    Article  PubMed  Google Scholar 

  • Placido DF, Campbell MT, Folsom JJ, Cui XP, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu J, Wang Q, Shen YF, Zhuang LF, Li CX, Tan MF, Bie TD, Chu CG, Qi ZJ (2015) Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet 128:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Chen PD, Li D, Zhou B, Zhang SZ, Sheng BQ, Xiang QJ, Duan XY, Zhou YL (1994) The gene Pm21-a new source for resistance to wheat powdery mildew. Acta Agro Sin 21:257–262

    Google Scholar 

  • Qiu YC, Zhang SS (2003) Researches on powdery mildew resistant genes and their molecular markers in wheat. J Triticeae Crops 24:127–132

    Google Scholar 

  • Ren SX, McIntosh RA, Lu ZJ (1997) Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica 93:353–360

    Article  Google Scholar 

  • Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Article  Google Scholar 

  • Ren TH, Chen F, Zhang HQ, Yan BJ, Ren ZL (2011) Genetic suppression of the powdery mildew resistance gene Pm21 in common wheat. Acta Phytopathol Sin 42:57–64

    Google Scholar 

  • Sarma D, Knott D (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Sears E (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Genetics in plant breeding Brook-haven Symposia in Biology, pp 1–22

  • Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X, Bai HG, Zhang HY, Tan FQ, Ren ZL, Luo PG (2015) Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet 128:517–528

    Article  CAS  PubMed  Google Scholar 

  • Sheng BQ, Duan XY (1991) Modification on the evaluation methods of 0–9 level of powdery mildew infection on wheat. BJ Agric Sci 9:37–39

    Google Scholar 

  • Shi YQ, Wang BT, Li Q, Wu XY, Wang F, Liu H, Tian YE, Liu QR (2009) Analysis of the virulent genes of Erysiphe graminis f. sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J Triticeae Crops 29:706–711

    CAS  Google Scholar 

  • Song LQ, Lu YQ, Zhang JP, Pan CL, Yang XM, Li XQ, Liu WH, Li LH (2016) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Li LH, He ZH, Duan XY, Zhou YL, Chen XM, Lillemo M, Singh RP, Wang H, Xia XC (2005) Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis 89:457–463

    Article  CAS  Google Scholar 

  • Wang ZZ, Li HW, Zhang DY, Guo L, Chen JJ, Chen YX, Wu QH, Xie JZ, Zhang Y, Sun QX, Dvorak J, Luo MC, Liu ZY (2015) Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128:365–373

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yang XM, Wang H, Li HJ, Li LH, Li XQ, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Yi YJ, Ma PT, Qie YM, Fu XY, Xu YF, Zhang XT, An DG (2015) Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet 128:2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Ye XL, Lu YQ, Liu WH, Chen GY, Han HM, Zhang JP, Yang XM, Li XQ, Gao AN, Li LH (2015) The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet 128:797–811

    Article  PubMed  Google Scholar 

  • Zeller F, Hsam S (1996) Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appl Genet 93:38–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang RQ, Zhang MY, Wang XE, Chen PD (2014) Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theor Appl Genet 127:523–533

    Article  CAS  Google Scholar 

  • Zhang JP, Liu WH, Han HM, Song LQ, Bai L, Gao ZH, Zhang Y, Yang XM, Li XQ, Gao AN, Li LH (2015a) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106:129–136

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang JP, Liu WH, Han HM, Lu YQ, Yang XM, Li XQ, Li LH (2015b) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837

    Article  PubMed  Google Scholar 

  • Zhang RQ, Hou F, Feng YG, Zhang W, Zhang MY, Chen PD (2015c) Characterization of a Triticum aestivumDasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet 128:2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Zhao RH, Wang HY, Xiao J, Bie TD, Cheng SH, Jia Q, Yuan CX, Zhang RQ, Cao AZ, Chen PD, Wang XE (2013) Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theor Appl Genet 126:2921–2930

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhuang QS, Li ZS (1993) Present status of wheat breeding and related genetic study in China. Wheat Inf Serv 76:1–15

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hongjie Li (Institute of Crop Science, Chinese Academy of Agricultural Sciences) for providing Bgt isolates E09 and E20. This research was supported by Grants from the National Natural Science Foundation of China (Grant No. 31471493 and 31271714), the National High Technology Research and Development Program of China (863 Grant No. 2011AA100101) and the National Key Technology Support Program of China (Grant No. 2013BAD01B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Liu or Lihui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. S. Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, B., Wang, J. et al. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet 130, 109–121 (2017). https://doi.org/10.1007/s00122-016-2797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2797-9

Keywords

Navigation