Skip to main content

Advertisement

Log in

Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Several QTLs and genes responsible for seed dormancy were detected and SNP candidates were shown to cause changes in seed germination.

Abstract

Seed dormancy is a key agricultural trait to prevent pre-harvest sprouting in crop plants such as rice (Oryza sativa L.), wheat (Triticum aestivum), and barley (Hordeum vulgare L.). However, our knowledge of seed dormancy is hampered by the complexities of studying a trait that changes over time after seed harvest, and is complicated by interactions between phytohormones, seed coat components and the environment. Here, we have conducted a genome-wide association study using a panel of 311 natural accessions of cultivated rice, examining a total of 519,158 single nucleotide polymorphisms (SNPs). Eight quantitative trait loci (QTLs) were found to associate with seed dormancy in the whole panel and five in the Japonica and Indica subpanel; expression of candidate genes within 100 kb of each QTL was examined in two published, germination-specific transcriptomic datasets. Ten candidate genes, differentially expressed within the first four days post-imbibition, were identified. Five of these genes had previously been associated with awn length, heading date, yield, and spikelet length phenotypes. Two candidates were validated using Quantitative Reverse Transcription (qRT)-PCR. In addition, previously identified genes involved in hormone signaling during germination were found to be differentially expressed between a japonica and an indica line; SNPs in the promoter of Os9BGlu33 were associated with germination index, with qRT-PCR validation. Collectively, our results are useful for future characterization of seed dormancy mechanism and crop improvement, and suggest haplotypes for further analysis that may be of use to boost PHS resistance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The association mapping population data can be found in Rice SNP-Seek database (Wang et al. 2018), and transcriptome data can be found in the Gene Expression Omnibus (GEO) database, with the accession number SRP277875 and GSE115371 (Narsai et al. 2017; Yang et al. 2020).

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basbouss-Serhal I, Leymarie J, Bailly C (2016) Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. J Exp Bot 67:119–130

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar N, Min M-K, Choi E-H, Kim N, Moon S-J, Yoon I, Kwon T, Jung K-H, Kim B-G (2017) The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10. Plant Mol Biol 93:389–401

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cantoro R, Fernandez LG, Cervigni GDL, Rodriguez MV, Gieco JO, Paniego N, Heinz RA, Benech-Arnold RL (2016) Seed dormancy QTL identification across a Sorghum bicolor segregating population. Euphytica 211:41–56

    Article  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Anal G (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  Google Scholar 

  • Dougherty RW, Boerma HR (1984) Genotypic variation for resistance to preharvest sprouting in Soybean. Crop Sci 24:683–686

    Article  Google Scholar 

  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9(1):156. https://doi.org/10.1186/1471-2164-9-516

    Article  CAS  Google Scholar 

  • Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K-i (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J 49:91–102

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559

    Article  CAS  PubMed  Google Scholar 

  • Gawenda I, Thorwarth P, Guenther T, Ordon F, Schmid KJ (2015) Genome-wide association studies in elite varieties of German winter barley using single-marker and haplotype-based methods. Plant Breeding 134:28–39

    Article  CAS  Google Scholar 

  • Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu XY, Kianian SF, Hareland GA, Hoffer BL, Foley ME (2005) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Gu X-Y, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104

    Article  CAS  PubMed  Google Scholar 

  • Gu X-Y, Foley ME, Horvath DP, Anderson JV, Feng J, Zhang L, Mowry CR, Ye H, Suttle JC, Kadowaki K-i, Chen Z (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189(4):1515–1524. https://doi.org/10.1534/genetics.111.131169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Hou X, Fang J, Wei P, Xu B, Chen M, Feng Y, Chu C (2013) The rice germination defective 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. Plant J 75:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q-F, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961-U976

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2002) The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1):4. https://doi.org/10.1186/1939-8433-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357-U121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  Google Scholar 

  • Lijavetzky D, Martinez MC, Carrari F, Hopp HE (2000) QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112:125–135

    Article  Google Scholar 

  • Lippert C, Xiang J, Horta D, Widmer C, Kadie C, Heckerman D, Listgarten J (2014) Greater power and computational efficiency for kernel-based association testing of sets of genetic variants. Bioinformatics 30:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lohwasser U, Roder MS, Borner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Niu X, Zhang M, Wang C, Xu Q, Feng Y, Yang Y, Wang S, Yuan X, Yu H, Wang Y, Chen X, Liang X, Wei X (2018) Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice (Oryza sativa L.). Front Plant Sci. https://doi.org/10.3389/fpls.2017.02213

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwa RA, Zhao H, Xing Y (2016) Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L). BMC Genet. https://doi.org/10.1186/s12863-016-0340-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansueto L, Rommel Fuentes R, Nikki Borja F, Detras J, Miguel Abriol-Santos J, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A, Dubchak I, Solovyev V, Wing RA, Sackville Hamilton R, Mauleon R, McNally KL, Alexandrov N (2017) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res 45:D1075–D1081

    Article  CAS  PubMed  Google Scholar 

  • Martinez SA, Godoy J, Huang M, Zhang Z, Carter AH, Campbell KAG, Steber CM (2018) Genome-wide association mapping for tolerance to preharvest sprouting and low falling numbers in wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihara M, Itoh T, Izawa T (2010) SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Res 38:D835–D842

    Article  CAS  PubMed  Google Scholar 

  • Narsai R, Secco D, Schultz MD, Ecker JR, Lister R, Whelan J (2017) Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation. Plant J 89:805–824

    Article  CAS  PubMed  Google Scholar 

  • Ntakirutimana F, Xiao B, Xie W, Zhang J, Zhang Z, Wang N, Yan J (2019) Potential effects of awn length variation on seed yield and components, seed dispersal and germination performance in siberian wildrye (Elymus sibiricus L). Plants-Basel 8(12):561. https://doi.org/10.3390/plants8120561

    Article  PubMed Central  Google Scholar 

  • Oh TR, Kim JH, Cho SK, Ryu MY, Yang SW, Kim WT (2017) AtAIRP2 E3 ligase affects aba and high-salinity responses by stimulating its ATP1/SDIRIP1 substrate turnover(1). Plant Physiol 174:2515–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687–700

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren R, Li D, Zhen C, Chen D, Chen X (2019) Specific roles of Os4BGlu10, Os6BGlu24, and Os9BGlu33 in seed germination, root elongation, and drought tolerance in rice. Planta 249:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Retief JD (2000) Phylogenetic analysis using PHYLIP. Method Mol Biol (clifton, NJ) 132:243–258

    CAS  Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka AE, Buckler ES, Zhang Z (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome. https://doi.org/10.3835/plantgenome2015.11.0120

    Article  PubMed  Google Scholar 

  • Vanhala TK, Stam P (2006) Quantitative trait loci for seed dormancy in wild barley (Hordeum spontaneum c. Koch). Genet Resour Crop Evol 53:1013–1019

    Article  CAS  Google Scholar 

  • Villanueva RAM, Chen ZJ (2019) Ggplot2: elegant graphics for data analysis (2nd eds). Measurement-Interdisciplinary Research And Perspectives, 17(3):160–167 doi: https://doi.org/10.1080/15366367.2019.1565254

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J-C, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703):43–49. https://doi.org/10.1038/s41586-018-0063-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Tang J, Gao S, Chang X, Du L, Chu C (2019) Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J 100(5):1036–1051. https://doi.org/10.1111/tpj.14501

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun. https://doi.org/10.1038/ncomms6087

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Su L, Li DD, Luo LX, Sun K, Yang M, Gu FW, Xia AY, Liu YZ, Wang H, Chen ZQ, Guo T (2020) Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genomics. https://doi.org/10.1186/s12864-020-07024-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhao J, He J, Wang X, Kang L, Yuan H, Chen D (2019) Identification and validation of five molecular markers for pre-harvest sprouting tolerance in Ningxia wheat varieties(Lines). Journal of Triticeae Crops 39:532–539

    Google Scholar 

  • Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W (2015) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43:D1018–D1022

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C (2019) Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor Appl Genet 132:2947–2963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Zhijing Luo and Ms. Mingjiao Chen for their assistance in rice growth, and Dr. Natalie Betts for her valuable suggestions on the article.

Author information

Authors and Affiliations

Authors

Contributions

Dabing Zhang and Wanqi Liang designed the study. Jin Shi performed the experiments and bioinformatic analysis. Jianxin Shi helped to revise the manuscript. All authors contributed to the article and approved the submitted version. This work was supported by the National Natural Science Foundation of China (grant nos. 31861163002 and 31700276), and the Innovative Research Team, Ministry of Education, and 111 Project (grant no. B14016).

Corresponding author

Correspondence to Dabing Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by Takuji Sasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 32 kb)

Supplementary file1 (965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Shi, J., Liang, W. et al. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet 134, 3553–3562 (2021). https://doi.org/10.1007/s00122-021-03911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03911-1

Navigation