Skip to main content
Log in

Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The aluminium tolerance of durum wheat was markedly enhanced by introgression of TaALMT1 and TaMATE1B from bread wheat. In contrast to bread wheat, TaMATE1B conferred greater aluminium tolerance than TaALMT1.

Abstract

Durum wheat (tetraploid AABB, Triticum turgidum) is a species that grows poorly on acid soils due to its sensitivity of Al3+. By contrast, bread wheat (hexaploid AABBDD, T. aestivum) shows a large variation in Al3+ tolerance which can be attributed to a major gene (TaALMT1) located on chromosome 4D as well as to other genes of minor effect such as TaMATE1B. Genotypic variation for Al3+ tolerance in durum germplasm is small and the introgression of genes from bread wheat is one option for enhancing the ability of durum wheat to grow on acid soils. Introgression of a large fragment of the 4D chromosome previously increased the Al3+ tolerance of durum wheat demonstrating the viability of transferring the TaALMT1 gene to durum wheat to increase its Al3+ tolerance. Here, we used a ph1 (pairing homoeologous) mutant of durum wheat to introgress a small fragment of the 4D chromosome harboring the TaALMT1 gene. The size of the 4D chromosomal fragment introgressed into durum wheat was estimated by markers, fluorescence in situ hybridisation and real-time quantitative PCR. In a parallel strategy, we introgressed TaMATE1B from bread wheat into durum wheat using conventional crosses. Both genes separately increased the Al3+ tolerance of durum wheat in both hydroponics and soil cultures. In contrast to bread wheat, the TaMATE1B gene was more effective than TaALMT1 in increasing the Al3+ tolerance of durum wheat grown on acid soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Able J, Atienza S (2014) Special issue: durum wheat for the future: challenges, research and prospects in the 21st century. Crop Pasture Sci 65:1–124

  • Ayala-Navarrete LI, Mechanicos AA, Gibson JM, Singh D, Bariana HS, Fletcher J, Shorter S, Larkin PJ (2013) The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor Appl Genet 126:2467–2475

    Article  CAS  PubMed  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Bai G-H, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    Article  CAS  PubMed  Google Scholar 

  • Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquini M (1996) Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytica 89:87–97

    Article  CAS  Google Scholar 

  • Cosic T, Poljak M, Custic M, Rengel Z (1994) Aluminum tolerance of durum-wheat germplasm. Euphytica 78:239–243

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci 101:15249–15254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Gorham J (1992) Methodology of gene-transfer by homoeologous recombination into Triticum turgidum—transfer of K+/Na+ discrimination from Triticum aestivum. Genome 35:639–646

    Article  Google Scholar 

  • Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum by the Kna1 locus transferred from the Triticum aestivum chromosome 4D by homoeologous recombination. Theor Appl Genet 87:872–877

    Article  CAS  PubMed  Google Scholar 

  • Habash DZ, Kehel Z, Nachit M (2010) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 61:1249

    Article  CAS  Google Scholar 

  • Han C, Ryan PR, Yan Z, Delhaize E (2014) Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance. Ann Bot 114:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618

    Article  CAS  Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Article  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • Luo MC, Dubcovsky J, Goyal S, Dvorak J (1996) Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat. Theor Appl Genet 93:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Ma H-X, Bai G-H, Lu W-Z (2006) Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283:239–249

    Article  CAS  Google Scholar 

  • Marais GF, Kotze L, Eksteen A (2010) Allosyndetic recombinants of the Aegilops peregrina-derived Lr59 translocation in common wheat. Plant Breed. 129:356–361

    CAS  Google Scholar 

  • McNeil D, Lagudah ES, Hohmann U, Appels R (1994) Amplification of DNA-sequences in wheat and its relatives—the Dgas44 and R350 families of repetitive sequences. Genome 37:320–327

    Article  CAS  PubMed  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Moroni JS, Sato K, Scott BJ, Conyers M, Read BJ, Fisher R, Poile G (2010) Novel barley (Hordeum vulgare L.) germplasm resistant to acidic soil. Crop Pasture Sci 61:540–553

    Article  Google Scholar 

  • Moustakas M, Yupsanis T, Symeonidis L, Karataglis S (1992) Aluminum toxicity effects on durum-wheat cultivars. J Plant Nutr 15:627–638

    Article  CAS  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Roder MS, Borner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Navakode S, Neumann K, Kobiljski B, Lohwasser U, Boerner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198:401–411

    Article  CAS  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J 64:446–455

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Sissons M (2008) Role of durum wheat composition on the quality of pasta and bread. Food. 2:75–90

    Google Scholar 

  • Sissons M, Pleming D, Margiotta B, D’Egidio MG, Lafiandra D (2014) Effect of the introduction of D-genome related gluten proteins on durum wheat pasta and bread making quality. Crop Pasture Sci 65:27–37

    Article  CAS  Google Scholar 

  • Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol 161:880–892

    Article  CAS  PubMed  Google Scholar 

  • Tsunewaki K (1992) Aneuploid analyses of hybrid necrosis and hybrid chlorosis in tetraploid wheats using the D-genome chromosome substitution lines of durum-wheat. Genome 35:594–601

    Article  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wang XW, Lai JR, Liu GT, Chen F (2002) Development of a scar marker for the Ph1 locus in common wheat and its application. Crop Sci 42:1365–1368

    Article  Google Scholar 

  • Zhang P, Li WL, Friebe B, Gill BS (2004) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987

    Article  CAS  PubMed  Google Scholar 

  • Zhou L-L, Bai G-H, Ma H-X, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.H. thanks the China Scholarship Council for financial support of a studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Delhaize.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2661_MOESM1_ESM.docx

Supplementary material 1 (DOCX 12 kb) Supplementary Fig. S1. Relative quantity of D-genome in the TaMATE1B line as estimated by a RT-qPCR assay of the Dgas family of sequences. The Dgas sequence is expressed as a ratio of the 28S ribosomal RNA sequences with the data normalized to show the value of a durum line that has the long arm of chromosome 4D (LF line) set at 1.0. The durum wheat cv Jandaroi was used as a negative control for the D-genome. Error bars show the SE with n = 3. Bars with different letters denote statistically different values at P < 0.05 as determined with a one-way ANOVA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Zhang, P., Ryan, P.R. et al. Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat. Theor Appl Genet 129, 729–739 (2016). https://doi.org/10.1007/s00122-015-2661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2661-3

Keywords

Navigation