Skip to main content
Log in

Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5′ and 3′ flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baucom RS, Estill JC, Leebens-Mack J, Bennetzen JL (2009) Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res 19:243–254

    Article  PubMed  CAS  Google Scholar 

  • Burns KH, Boeke JD (2012) Human transposon tectonics. Cell 149:740–752

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Poulter RT, Han JS (2009) LINE-like retrotransposition in Saccharomyces cerevisiae. Genetics 181:301–311

    Article  PubMed  CAS  Google Scholar 

  • Farkash EA, Kao GD, Horman SR, Prak ET (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Frank T, Meuleye BS, Miller A, Shu QY, Engel KH (2007) Metabolite profiling of two low phytic acid (lpa) rice mutants. J Agr Food Chem 55:11011–11019

    Article  CAS  Google Scholar 

  • Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform 9:371

    Article  Google Scholar 

  • Jeggo PA, Geuting V, Lobrich M (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101:7–12

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH, Goodier JL (2002) LINE drive: retrotransposition and genome instability. Cell 110:277–280

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Andaya CB, Goyal SS, Tai TH (2008a) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH (2008b) Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theor Appl Genet 117:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Kines KJ, Belancio VP (2012) Expressing genes do not forget their LINEs: transposable elements and gene expression. Front Biosci 17:1329–1344

    Article  CAS  Google Scholar 

  • Komatsu M (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  PubMed  CAS  Google Scholar 

  • Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    Article  PubMed  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Li CY, Park DS, Won SR, Hong SK, Ham JK, Choi JK, Rhee HI (2008) Food chemical properties of low-phytate rice cultivar, Sang-gol. J Cereal Sci 47:262–265

    Article  CAS  Google Scholar 

  • Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G (2011) Identification and validation of rice reference proteins for western blotting. J Exp Bot 62:4763–4772

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Li H, Choi JK, Kim HW, Hong SK, Xu ZH, Rhee HI (2012) Physicochemical properties of low-phytate rice cultivar, sang-gol. J Korean Soc Appl Biol Chem 55:101–104

    Article  CAS  Google Scholar 

  • Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814

    Article  PubMed  CAS  Google Scholar 

  • Lott JNA, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Maroof MAS, Glover NM, Biyashev RM, Buss GR, Grabau EA (2009) Genetic basis of the low-phytate trait in the soybean line CX1834. Crop Sci 49:69–76

    Article  CAS  Google Scholar 

  • Matsui H, Miyao A, Takahashi A, Hirochika H (2010) Pdk1 kinase regulates basal disease resistance through the OsOxi1–OsPti1a phosphorylation cascade in rice. Plant Cell Physiol 51:2082–2091

    Article  PubMed  CAS  Google Scholar 

  • McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  PubMed  CAS  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    Article  PubMed  CAS  Google Scholar 

  • Nunes AC, Vianna GR, Cuneo F, Amaya-Farfan J, de Capdeville G, Rech EL, Aragao FJ (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    Article  PubMed  CAS  Google Scholar 

  • Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284:26510–26518

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Endo M, Toki S (2012) Double-stranded DNA break, repair and associated mutations. In: Shu QY, Foster B, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI international, pp 71–80

  • Panzeri D, Cassani E, Doria E, Tagliabue G, Forti L, Campion B, Bollini R, Brearley CA, Pilu R, Nielsen E, Sparvoli F (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2007) Forward genetics studies of seed phytic acid. Isr J Plant Sci 55:171–181

    Article  CAS  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158:489–497

    Article  CAS  Google Scholar 

  • Robbins ML, Sekhon RS, Meeley R, Chopra S (2008) A Mutator transposon insertion is associated with ectopic expression of a tandemly repeated multicopy Myb gene pericarp color1 of maize. Genetics 178:1859–1874

    Article  PubMed  CAS  Google Scholar 

  • Rosso ML, Burleson SA, Maupin LM, Rainy KM (2011) Development of breeder-friendly markers for selection of MIPS1 mutations in soybean. Mol Breed 28:127–132

    Article  Google Scholar 

  • Rutger JN, Raboy V, Moldenhauer KAK, Bryant RJ, Lee FN, Gibbons JW (2004) Registration of KBNT lpa1-1 low phytic acid germplasm of rice. Crop Sci 44:363-363

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  PubMed  CAS  Google Scholar 

  • Shi JR, Wang HY, Schellin K, Li BL, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  PubMed  CAS  Google Scholar 

  • Spear JD, Fehr WR (2007) Genetic improvement of seedling emergence of soybean lines with low phytate. Crop Sci 47:1354–1360

    Article  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Pro Natl Acad Sci USA 102:12612–12617

    Article  CAS  Google Scholar 

  • Tan YY, Fu HW, Zhao HJ, Lu S, Fu JJ, Li YF, Cui HR, Shu QY (2013) Functional molecular markers and high-resolution melting curve analysis of low phytic acid mutations for marker-assisted selection in rice. Mol Breed 31:517–528

    Google Scholar 

  • Tanaka A, Nakatani Y, Hamada N, Jinno-Oue A, Shimizu N, Wada S, Funayama T, Mori T, Islam S, Hoque SA, Shinagawa M, Ohtsuki T, Kobayashi Y, Hoshino H (2012) Ionising irradiation alters the dynamics of human long interspersed nuclear elements 1 (LINE1) retrotransposon. Mutagenesis 27:599–607

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604

    Article  PubMed  CAS  Google Scholar 

  • Xu XH, Zhao HJ, Liu QL, Frank T, Engel KH, An G, Shu QY (2009) Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theor Appl Genet 119:75–83

    Article  PubMed  CAS  Google Scholar 

  • Yuan FJ, Zhu DH, Tan YY, Dong DK, Fu XJ, Zhu SL, Li BQ, Shu QY (2012) Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Theor Appl Genet 125:1413–1423

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Zhou DX (2012) Epigenomic modification and epigenetic regulation in rice. J Genet Genomics 39:307–315

    Article  PubMed  CAS  Google Scholar 

  • Zhao HJ, Liu QL, Fu HL, Xu XH, Wu DX, Shu QY (2008a) Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res 108:206–211

    Article  Google Scholar 

  • Zhao HJ, Liu QL, Ren XL, Wu DX, Shu QY (2008b) Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breed 22:603–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Sino-Swiss Joint Research Project (2009 DFA32040 and IZLCZ3 123946I) and Natural Science Foundation of China through research contracts No. 30900887, and in part supported by Zhejiang Provincial Innovation Team of Nuclear Agricultural Science and Technology (2010R50033) and Natural Science Foundation (LY13C130002), the Special Fund for Agro-scientific Research in the Public Interest (201103007). We are grateful to Dr. Chao-Yang Cheng and the anonymous reviewers for their critical comments on early versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yao Shu.

Additional information

Communicated by T. Tai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HJ., Cui, HR., Xu, XH. et al. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. Theor Appl Genet 126, 3009–3020 (2013). https://doi.org/10.1007/s00122-013-2189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2189-3

Keywords

Navigation