Skip to main content
Log in

A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The novel spontaneous long hypocotyl and early flowering (lhef) mutation in cucumber is due to a 5551-bp LTR-retrotransposon insertion in CsPHYB gene encoding PHYTOCHROME B, which plays a major role in regulating photomorphogenic hypocotyl growth and flowering.

Abstract

Hypocotyl length and flowering time are important for establishing high-quality seedlings in modern cucumber production, but little is known for the underlying molecular mechanisms of these two traits. In this study, a spontaneous cucumber long hypocotyl and early flowering mutant was identified and characterized. Based on multiple lines of evidence, we show that cucumber phytochrome B (CsPHYB) is the candidate gene for this mutation, and a 5551-bp LTR-retrotransposon insertion in the first exon of CsPHYB was responsible for the mutant phenotypes. Uniqueness of the mutant allele at CsPHYB was verified in 114 natural cucumber lines. Ectopic expression of the CsPHYB in Arabidopsis phyB mutant rescued the long hypocotyl and early flowering phenotype of phyB-9 mutant. The wild-type CsPHYB protein was localized on the membrane and cytoplasm under white light condition, whereas in the nucleus under red light, it is consistent with its roles as a red-light photoreceptor in Arabidopsis. However, the mutant csphyb protein was localized on the membrane and cytoplasm under both white and red-light conditions. Expression dynamics of CsPHYB and several cell elongation-related genes were positively correlated with hypocotyl elongation; the transcription levels of key positive and negative regulators for flowering time were also consistent with the anthesis dates in the mutant and wild-type plants. Yeast two hybrid and bimolecular fluorescence complementation assays identified physical interactions between CsPHYB and phytochrome interacting factor 3/4 (CsPIF3/4). These findings will provide new insights into the roles of the CsPHYB in cucumber hypocotyl growth and flowering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Blázquez MA, Weigel D (1999) Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis. Plant Physiol 120:1025–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Bo KL, Wang H, Pan YP, Behera TK, Pandey S, Wen CL, Wang YH, Simon PW, Li YH, Chen JF, Weng YQ (2016) SHORT HYPOCOTYL1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation. Plant Physiol 172:1273–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YL, Bartholomew ES, Dong MM, Zhai XL, Yin S, Zhang YQ, Feng ZX, Wu LC, Liu W, Shan N, Zhang X, Ren HZ, Liu XW (2020) The HD-ZIP IV transcription factor GL2-Like regulates male flowering time and fertility in cucumber. J Exp Bot 71:5425–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavatorta J, Moriarty G, Glos M, Henning M, Kreitinger M, Mazourek M, Munger H, Jahn J (2012) Salt and pepper’: a disease-resistant cucumber Inbred. HortSci 47:427–428

    Article  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71:791–801

    Article  CAS  PubMed  Google Scholar 

  • Devlin PF, Rood SB, Somers DE, Quail PH, Whitelam GC (1992) Photophysiology of the elongated internode (ein) mutant of brassica rapa: ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol 100:1442–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Nakamura S, Araki T, Mochizuki N, Nagatani A (2005) Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17:1941–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragoso V, Oh Y, Kim SG, Gase K, Baldwin IT (2017) Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. J Integr Plant Biol 59:205–224

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24

    Article  CAS  PubMed  Google Scholar 

  • Fukazawa J, Ohashi Y, Takahashi R, Nakai K, Takahashi Y (2021) DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. Plant Cell 33:2258–2272

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA (2017) LTR-retrotransposons in plants: engines of evolution. Gene 626:14–25

    Article  PubMed  Google Scholar 

  • Galvāo VC, Fiorucci AS, Trevisan M, Franco-Zorilla JM, Goyal A, Schmid-Siegert E, Solano R, Fankhauser C (2019) PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat Commun 10:4005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge XM, Hu X, Zhang J, Huang QM, Gao Y, Li ZQ, Li S, He JM (2020) UV RESISTANCE LOCUS8 mediates ultraviolet-B-induced stomatal closure in an ethylene-dependent manner. Plant Sci 301:110679

    Article  CAS  PubMed  Google Scholar 

  • Hajdu A, Ádám É, Sheerin DJ, Dobos O, Bernula P, Hiltbrunner A, Kozma-Bognár L, Nagy F (2015) High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant J 83:794–805

    Article  CAS  PubMed  Google Scholar 

  • Heng YQ, Jiang Y, Zhao XH, Zhou H, Wang XC, Deng XW, Xu DQ (2019) BBX4, a phyB-interacting and modulated regulator, directly interacts with PIF3 to fine tune red light-mediated photomorphogenesis. Proc Natl Acad Sci USA 116:26049–26056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LL, Liu P, Jin ZS, Sun J, Weng YQ, Chen P, Du SL, Wei AM, Li YH (2021) A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1 (elh1) phenotype in cucumber (Cucumis sativus L.). Theor Appl Genet 134:2639–2652

    Article  CAS  PubMed  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue SI, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki KI (2020) CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. Plant J 104:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iñigo S, Alvarez MJ, Strasser B, Califano A, Cerdán PD (2011) PFT1, the MED25 subunit of the plant mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J 69:601–612

    Article  PubMed  Google Scholar 

  • Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH (2010) Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kahle N, Sheerin DJ, Fischbach P, Koch LA, Schwenk P, Lambert D, Rodriguez R, Kerner K, Hoecker U, Zurbriggen MD, Hiltbrunner A (2020) COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling. Plant J 104:1038–1053

    Article  CAS  PubMed  Google Scholar 

  • Kippes N, Vangessel C, Hamilton J, Akpinar A, Budak H, Dubcovsky J, Pearce S (2020) Effects of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol 20:297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Article  Google Scholar 

  • Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi-Kishore CS (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912

    Article  CAS  PubMed  Google Scholar 

  • Lazaro A, Mouriz A, Piñeiro M, Jarillo JA (2015) Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27:2437–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IJ, Foster KR, Morgan PW (1998a) Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol 116:1003–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IJ, Foster KR, Morgan PW (1998b) Effect of gibberellin biosynthesis inhibitors on native gibberellin content, growth and floral initiation in Sorghum bicolor. J Plant Growth Regul 17:185–195

    Article  PubMed  Google Scholar 

  • Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30

    CAS  PubMed  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  CAS  PubMed  Google Scholar 

  • Li XY (2011) Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio-Protoc 1:1–3

    Article  CAS  Google Scholar 

  • Li YH, Wen CL, Weng YQ (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Weng JY, Guan DL, Zhang Y, Niu QL, López-Juez E, Lai YS, Garcia-Mas J, Huang DF (2021a) A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol Hortic 1:3

    Article  CAS  Google Scholar 

  • Liu SR, Yang LW, Li JL, Tang WJ, Li JG, Lin RC (2021b) FHY3 interacts with phytochrome B and regulates seed dormancy and germination. Plant Physiol 187:289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Lu X, Zhou C, Xu P, Luo Q, Lian H, Yang H (2015) Red light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and phoeomorphogenic development in Arabidopsis. Mol Plant 8:467–478

    Article  CAS  PubMed  Google Scholar 

  • Mao ZL, He SB, Xu F, Wei XX, Jiang L, Wang WX, Li T, Xu PB, Du SS, Li L, Lian HL, Guo TT, Yang HQ (2020) Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. New Phytol 225:848–865

    Article  CAS  PubMed  Google Scholar 

  • Miao TT, Li DZ, Huang ZY, Huang YW, Li SS, Wang Y (2021) Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. Plant Signal Behav 16:1966587

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao LX, Zhao JC, Yang GQ, Xu P, Cao XL, Du SS, Xu F, Jiang L, Zhang SL, Wei XX, Liu Y, Chen HR, Mao ZL, Guo TT, Kou S, Wang WX, Yang HQ (2022) Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light. New Phytol 234:1347–1362

    Article  CAS  PubMed  Google Scholar 

  • Ming CH, Jiang FL, Hu HM, Zhou XC, Zhan FH, Wu Z (2011) Effects of different leggy extent seedling on cucumber growth, yield and quality. China Veg 4:29–34 (In Chinese)

    Google Scholar 

  • Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073–2082

    Article  CAS  PubMed  Google Scholar 

  • Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13:565–570

    Article  CAS  PubMed  Google Scholar 

  • Nakano T (2019) Hypocotyl elongation: a molecular mechanism for the first event in plant growth that influences its physiology. Plant Cell Physiol 60:933–934

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser J, Chory J (2002) Photomorphogenesis the Arabidopsis. Book 1:e0054

    Google Scholar 

  • Oda A, Fujiwara S, Kamada H, Coupland G, Mizoguchi T (2004) Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression. FEBS Lett 557:259–264

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Park E, Song K, Bae G, Choi G (2020) Phytochrome interacting factor 8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell 32:186–205

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Qu SP, Bo KL, Gao ML, Haider KR, Weng Y (2017) QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor Appl Genet 130:1531–1548

    Article  CAS  PubMed  Google Scholar 

  • Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J (2016) RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol 16:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H, Xie B, Gu X, Wang X, Du C, Jin W, Huang S (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins MD, Staub JE (2009) Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet 119:621–634

    Article  PubMed  Google Scholar 

  • Rusaczonek A, Czarnocka W, Willems P, Sujkowska-Rybkowska M, Breusegem FN, Karpiński S (2021) Phototropin 1 and 2 influence photosynthesis, UV-C induced photooxidative stress responses, and cell death. Cells 10:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sheerin DJ, Menon C, Oven-Krockhaus SZ, Enderle B, Zhu L, Johnen P, Schleifenbaum F, Stierhof YD, Huq E, Hiltbrunner A (2015) Light-activated phytochrome A and B interact with memebers of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng YY, Pan YP, Li YH, Yang LM, Weng YQ (2019) Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus). Plant Breeding 139:176–191

    Article  Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    Article  CAS  PubMed  Google Scholar 

  • Su L, Hou P, Song MF, Zheng X, Guo L, Xiao Y, Yan L, Li WC, Yang JP (2015) Synergistic and antagonistic action of phytochrome (Phy) A and PhyB during seedling de-etiolation in Arabidopsis thaliana. Int J Mol Sci 16:12199–12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun WJ, Han HY, Deng L, Sun CL, Xu TR, Li LH, Ren PR, Zhao JH, Zhai QZ, Li CY (2020) Mediator subunit MED25 physically interacts with PHYTOCHROME INTERACTING FACTOR4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol 184:1549–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Suriyagoda L, Shigeyama T, Tominaga A, Sasaki M, Hiratsuka Y, Yoshinaga A, Arima S, Agarie S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R, Sato S, Kaneko T, Tabata S, Hirsh AM (2011) Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ration through jasmonic acid (JA) signaling. Proc Natl Acad Sci USA 108:16837–16842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of de-etiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuinen AV, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995) A temporarily red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. Plant Physiol 108:939–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner D, Koloszvari M, Quail PH (1996) Two small spatially distinct regions of phytochrome B are required for efficient signaling rates. Plant Cell 8:859–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Bo KL, Gu XF, Pan JS, Li YH, Chen JF, Wen CL, Ren ZH, Ren HZ, Chen XH, Grumet G, Weng Y (2019) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic Res 7:3

    Article  Google Scholar 

  • Wei XX, Wang WT, Xu P, Wang WX, Guo TT, Kou S, Liu MQ, Niu YK, Yang HQ, Mao ZL (2021) Phytochrome B interacts with SWC6 and ARP6 to regulate H2A.Z deposition and photomorphogenesis in Arabidopsis. J Integr Plant Biol 63:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, Sanmiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wollenberg AC, Strasser B, Cerdán PD, Amasino RM (2008) Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol 148:1681–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Xu PB, Lian HL, Xu F, Zhang T, Wang S, Wang WX, Du SS, Huang JR, Yang HQ (2019) Phytochrome B and AGB1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in Arabidopsis. Mol Plant 12:229–247

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen HR, Li T, Xu F, Mao ZL, Cao XL, Miao LX, Du SS, Hua J, Zhao JC, Guo TT, Kou S, Wang WX, Yang HQ (2021) Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell 33:2375–2394

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S (2020) Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol 62:1270–1292

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Li C, Dong XJ, Li H, Zhang D, Zhou YY, Jiang BC, Peng J, Qin XY, Cheng JK, Wang XJ, Song PY, Qi LJ, Zheng Y, Li BS, Terzaghi W, Yang SH, Guo Y, Li JG (2020) MYB30 is a key negative regulator of Arabidopsis photomorphogenic development that promotes PIF4 and PIF5 protein accumulation in the light. Plant Cell 32:2196–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Mukougawa K, Uemoto M, Yokofuji A, Suzuri R, Nishitani A, Kohchi T (2012) The phytochrome-interacting VASCULAR PLANT ONE-ZINC FINGER1 AND VOZ2 redundantly regulate flowering in Arabidopsis. Plant Cell 24:3248–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sarmiento-Mañús R, Yamori W, Ponce MR, Micol JL, Tsukaya H (2018) The Arabidopsis phyB-9 mutant has a second-site mutation in the VENOSA4 gene that alters chloroplast size, photosynthetic traits, and leaf growth. Plant Physiol 178:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Zeng BJ, Tang DY, Yang JX, Qu LN, Yan JD, Wang XC, Li X, Liu XM, Zhao XY (2021) The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis. Mol Plant 14:1328–1342

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Li R, Baldwin IT (2020) ZEITLUPE is required for shade avoidance in the wild tobacco Nicotiana attenuata. J Integr Plant Biol 62:1341–1351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in PC’s and HY’s lab was supported by the National Natural Science Foundation of China under Project #31860557. YL’s lab was supported by the National Natural Science Foundation of China under Project #31772300. YW’s lab was supported by the Agriculture and Food Research Initiative competitive Grant No. 2017-67013-26195 of the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

LH performed the research and prepared a draft of the manuscript. MZ, JS, ZL and YW participated in the research. HY participated in data analysis and provided technical help. YL and PC designed the experiments, supervised this study and revised the manuscript with inputs from YW. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Yuhong Li or Peng Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Data availability

All data generated or analyzed that support the findings of this study are included in the main text article and its supplementary files.

Additional information

Communicated by Richard G.F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhang, M., Shang, J. et al. A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). Theor Appl Genet 136, 68 (2023). https://doi.org/10.1007/s00122-023-04271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04271-8

Navigation