Skip to main content
Log in

Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease of wheat worldwide. Host plant resistance is the best strategy to manage this disease. Traditionally, bi-parental mapping populations have been used to identify and map quantitative trait loci (QTL) affecting tan spot resistance in wheat. The association mapping (AM) could be an alternative approach to identify QTL based on linkage disequilibrium (LD) within a diverse germplasm set. In this study, we assessed resistance to P. tritici-repentis races 1 and 5 in 567 spring wheat landraces from the USDA-ARS National Small Grains Collection (NSGC). Using 832 diversity array technology (DArT) markers, QTL for resistance to P. tritici-repentis races 1 and 5 were identified. A linear model with principal components suggests that at least seven and three DArT markers were significantly associated with resistance to P. tritici-repentis races 1 and 5, respectively. The DArT markers associated with resistance to race 1 were detected on chromosomes 1D, 2A, 2B, 2D, 4A, 5B, and 7D and explained 1.3–3.1% of the phenotypic variance, while markers associated with resistance to race 5 were distributed on 2D, 6A and 7D, and explained 2.2–5.9% of the phenotypic variance. Some of the genomic regions identified in this study correspond to previously identified loci responsible for resistance to P. tritici-repentis, offering validation for our AM approach. Other regions identified were novel and could possess genes useful for resistance breeding. Some DArT markers associated with resistance to race 1 also were localized in the same regions of wheat chromosomes where QTL for resistance to yellow rust, leaf rust and powdery mildew, have been mapped previously. This study demonstrates that AM can be a useful approach to identify and map novel genomic regions involved in resistance to P. tritici-repentis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeysekara S, Friesen TL, Liu Z, McClean PE, Faris JD (2010) Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. Plant Genome 3:179–189

    Article  CAS  Google Scholar 

  • Adhikari TB, Ali S, Myrfield M, Burlakoti RR (2008) The global genetic structure of Pyrenophora tritici-repentis populations. Phytopathology 98(Suppl.):S10

    Google Scholar 

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breeding 19:341–356

    Article  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Google Scholar 

  • Ali S, Francl LJ (2002) A new race of P. tritici-repentis from Brazil. (Abstract). Plant Dis 86:1050

    Google Scholar 

  • Ali S, Gurung S, Adhikari TB (2010) Identification and characterization of novel isolates of Pyrenophora tritici-repentis from Arkansas. Plant Dis 94:229–235

    Article  CAS  Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to a Pyrenophora tritici-repentis necrosis inducing toxin in durum and common wheat. Phytopathology 89:293–297

    Article  PubMed  CAS  Google Scholar 

  • Arbelbide M, Bernardo R (2006) Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet 112:885–890

    Article  PubMed  CAS  Google Scholar 

  • Ballance GM, Lamari L, Bernier CC (1989) Purification and characterization of a host-selective necrosis toxin from Pyrenophora tritici-repentis. Physiol Mol Plant Pathol 35:203–213

    Article  CAS  Google Scholar 

  • Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1663

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29:1165–1188

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Buckler ES IV, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrell M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. Wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chu CG, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  PubMed  CAS  Google Scholar 

  • Chu CG, Chao S, Friesen TL, Faris JD, Zhong SB, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breeding 25:327–338

    Article  CAS  Google Scholar 

  • Ciuffetti LM, Tuori RP (1999) Advances in the characterization of the Pyrenophora tritici-repentis-wheat interaction. Phytopathology 89:444–449

    Article  PubMed  CAS  Google Scholar 

  • Ciuffetti LM, Tuori RP, Gaventa JM (1997) A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell 9:135–144

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Yarham DJ (1989) Occurrence of tan spot of wheat caused by Pyrenophora tritici-repentis on wheat in England and Wales in 1987. Plant Pathol 38:101–102

    Article  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • de Wolf ED, Effertz RJ, Ali S, Francl L (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–444

    Article  Google Scholar 

  • Effertz RJ, Anderson JA, Francl LJ (2001) Restriction fragment length polymorphism mapping of resistance to two races of Pyrenophora tritici-repentis in adult and seedling wheat. Phytopathology 91:572–578

    Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    Article  PubMed  CAS  Google Scholar 

  • Elias E, Cantrell RG, Horsford RM Jr (1989) Heritability of resistance to tan spot in durum wheat and its association with other agronomic traits. Crop Sci 29:299–304

    Article  Google Scholar 

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol Breeding 26:39–49

    Article  CAS  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordhal JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Gamba FM, Lamari L (1998) Mendelian inheritance of resistance to tan spot (Pyrenophora tritici-repentis) in selected genotypes of durum wheat (Triticum turgidum). Can J Plant Pathol 20:408–414

    Article  Google Scholar 

  • Gindrat D, Frei P, Mohl D (1988) The diagnostic and information service on diseases of major cultivated plants at the Changins station. Rev Suisse Agric 20:247–248

    Google Scholar 

  • Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomic. Nat Rev Genet 4:937–947

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Hosford RM Jr (1982) Tan spot-developing knowledge 1902–1981, virulent races and wheat differentials, methodology, rating systems, other leaf diseases, literature. In: Hosford RM Jr (ed) Tan spot of wheat and related diseases workshop. North Dakota Agricultural Experiment Station, Fargo, pp 1–24

    Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  PubMed  CAS  Google Scholar 

  • Lamari L, Bernier CC (1989) Evaluation of wheat lines and cultivars to tan spot (Pyrenophora tritici-repentis) based on lesion type. Can J Plant Pathol 11:49–56

    Article  Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici- repentis from the host center of diversity confirms a one to one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  PubMed  CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Google Scholar 

  • Li HB, Yan W, Liu GR, Wen SM, Liu CJ (2011) Identification and validation of quantitative trait loci conferring tan spot resistance in the bread wheat variety Ernie. Theor Appl Genet 122:395–403

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse S (2004) PowerMarker: New Genetic Data Analysis Software, Version 2.7 (http://www.powermarker.net)

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breeding 15:271–289

    Article  CAS  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 75:879–889

    Article  Google Scholar 

  • Manning VA, Pandelova I, Ciuffetti LM (2002) A race for a novel host selective toxin. Phytopathology 92:S51

    Article  Google Scholar 

  • Martinez JP, Ottum SA, Ali S, Francl LJ, Ciuffetti LM (2001) Characterization of the ToxB gene from Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 14:675–677

    Article  PubMed  CAS  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Macky RD, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454

    Article  Google Scholar 

  • Meinhardt S, Ali S, Ling H, Francl L (2003) A new race of Pyrenophora tritici-repentis that produces a putative host-selective toxin. In: Rasmussen JB, Friesen TL, Ali S (eds) Proceedings of the fourth international wheat tan spot and spot blotch workshop. North Dakota Agric. Exp. Station, Fargo, pp 117–121

    Google Scholar 

  • Neu CNS, Keller B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  PubMed  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breeding 27:37–58

    Article  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Stodart B, Ryan PP, Delhaize E, Emebiri l, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    Article  PubMed  CAS  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breeding 26:243–256

    Article  Google Scholar 

  • Sadeque A, Turner MA (2010) QTL analysis of plant height in hexaploid wheat doubled haploid population. Thai J Agric Sci 43(2):91–96

    Google Scholar 

  • SAS Institute Inc. (2010) SAS OnlineDoc, Version 9.2. SAS Institute, Cary, USA

    Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644

    Article  PubMed  CAS  Google Scholar 

  • Schilder AMC (1989) Distribution, prevalence and severity of fungal leaf and spike disease of winter wheat in New York. Phytopathology 80:84–90

    Article  Google Scholar 

  • Shah DA, Madden LV (2004) Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology 94:33–43

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Hughes GR (2006) Genetic similarity among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. J Phytopathology 154:178–184

    Article  CAS  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene in tetraploid wheat conferring resistance to Pyrenophora tritici-repentis race 3. Phytopathology 96:885–889

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008) Genetics and molecular mapping of resistance to necrosis inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breeding 21:293–304

    Article  CAS  Google Scholar 

  • Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM (2009) Genetics of wheat-Pyrenophora tritici-repentis interactions. Euphytica 171:1–13

    Article  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breeding 25:369–379

    Article  CAS  Google Scholar 

  • Strelkov SE, Lamari L, Balance GM (1999) Characterization of a host-specifi c protein (Ptr ToxB) from Pyrenophora tritici-repentis. Mol Plant-Microbe Interact 12:728–732

    Article  CAS  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006a) Evaluation of common wheat (Triticum aestivum L.) cultivars for tan spot resistance and chromosomal location of a resistance gene in cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2006b) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci 46:1212–1217

    Article  Google Scholar 

  • Tomas A, Feng GH, Reeck GR, Bockus WW, Leach JE (1990) Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Mol Plant-Microbe Interact 3:221–224

    Article  CAS  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  PubMed  CAS  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Amer Statist Ass 58:236–244

    Article  Google Scholar 

  • Weber AL, Clark MR, Vaughn L, Sanchez-Gonzalez JDJ, Yu J, Yandell BS, Bradbury P, Doebley JF (2007) Major regulatory genes in maize contribute to standing variation in Teosinte (Zea mays ssp. parviglumis). Genetics 177:2349–2359

    Article  PubMed  CAS  Google Scholar 

  • Weber AL, Briggs WH, Rucker J, Baltazar BM, de Jesus Sanchez-Gonzalez J, Feng P, Buckler E, Doebley JF (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180:1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this project from the Wheat Research and Promotion Council, Minnesota, North Dakota Wheat Commission, and State Board of Agricultural Research and Education, North Dakota, and USDA-ARS specific cooperative agreement 58-5366-0-133. We are grateful to Dr. Andrzej Kilian for DArT marker data analysis and Jana Hansen for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Adhikari.

Additional information

Communicated by B. Keller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 960 kb)

Supplementary material 2 (PPT 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurung, S., Mamidi, S., Bonman, J.M. et al. Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123, 1029–1041 (2011). https://doi.org/10.1007/s00122-011-1645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1645-1

Keywords

Navigation