Skip to main content
Log in

A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A Chinese Spring-Sumai 3 chromosome 7A disomic substitution line (CS-Sumai 3-7ADSL) was reported to have a high level of Fusarium head blight (FHB) resistance for symptom spread within a spike (Type II) and low deoxynivalenol accumulation in infected kernels (Type III), but a quantitative trait locus (QTL) on chromosome 7A has never been identified from this source. To characterize QTL on chromosome 7A, we developed 191 7A chromosome recombinant inbred lines (7ACRIL) from a cross between Chinese Spring and CS-Sumai 3-7ADSL and evaluated both types of resistance in three greenhouse experiments. Two major QTL with Sumai 3 origin, conditioning both Type II and III resistance, were mapped in the short arm of chromosomes 3B (3BS) and near the centromere of chromosome 7A (7AC). The 3BS QTL corresponds to previously reported Fhb1 from Sumai 3, whereas 7AC QTL, designated as Fhb7AC, is a novel QTL identified from CS-Sumai 3-7ADSL in this study. Fhb7AC explains 22% phenotypic variation for Type II and 24% for Type III resistance. Marker Xwmc17 is the closest marker to Fhb7AC for both types of resistance. Fhb1 and Fhb7AC were additive, and together explained 56% variation for Type II and 41% for Type III resistance and resulted in 66% reduction in FHB severity and 84% reduction in deoxynivalenol (DON) content. Haplotype analysis of Sumai 3 parents revealed that Fhb7AC originated from Funo, an Italian cultivar. Fhb7AC has the potential to be used in improving wheat cultivars for both types of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47(S3):S112–S119

    Google Scholar 

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Bai GH, Plattner R, Desjardins A, Kolb F (2001) Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed 120:1–6

    Article  CAS  Google Scholar 

  • Bai GH, Shaner G (1996) Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis 80:975–979

    Article  Google Scholar 

  • Bai GH, Shaner G, Ohm H (2000) Inheritance of resistance to Fusarium graminearum in wheat. Theor Appl Genet 100:1–8

    Article  Google Scholar 

  • Bai GH, Shaner GE (1994) Scab of wheat: perspective and control. Plant Dis 78:760–766

    Article  Google Scholar 

  • Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348

    Article  PubMed  CAS  Google Scholar 

  • Bai GH, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Griffey CA, Saghai-Maroof MA, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for Fusarium head blight resistance in chinese wheat line W14. Plant Breed 125:99–101

    Article  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1. a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Jia G, Chen P, Qin G, Bai G, Wang X, Wang S, Zhou B, Zhang S, Liu D (2005) QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra’s. Euphytica 146:183–191

    Article  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Kolb FL, Bai GH, Muehlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers. Crop Sci 41:611–619

    Article  CAS  Google Scholar 

  • Korosteleva SN, Smith TK, Boermans HJ (2007) Effects of feed borne Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cows. J Dairy Sci 90:3867–3873

    Article  PubMed  CAS  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhāzy Ã, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: type I resistance. Theor Appl Genet 112:528–535

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201

    Article  CAS  Google Scholar 

  • Ma H-X, Bai G-H, Gill BS, Hart LP (2006a) Deletion of a chromosome arm altered wheat resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese Spring. Plant Dis 90:1545–1549

    Article  CAS  Google Scholar 

  • Ma HX, Bai GH, Zhang X, Lu WZ (2006b) Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534–541

    Article  PubMed  CAS  Google Scholar 

  • Ma HX, Zhang KM, Gao L, Bai GH, Chen HG, Cai ZX, Lu WZ (2006c) Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Plant Pathol 55:739–745

    Article  CAS  Google Scholar 

  • Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124:329–333

    Article  Google Scholar 

  • Mardi M, Pazouki L, Delavar H, Kazemi MB, Ghareyazie B, Steiner B, Nolz R, Lemmens M, Buerstmayr H (2006) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Frontana’-derived population. Plant Breed 125:313–317

    Article  Google Scholar 

  • Mesterházy Á, Bartók T, Mirocha CG, Komoróczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  • Miller JD, Young JC, Sampson DR (1985) Deoxynivalenol and Fusarium head blight resistance in spring cereals. Phytopathol Z 113:359–367

    Article  CAS  Google Scholar 

  • Mirocha CJ, Kolaczkowski E, Xie W, Yu H, Jelen H (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography/mass spectrometry. J Agric Food Chem 46:1414–1418

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0: Software for the calculation of genetic linkage maps. 3.0 edn. Plant Res Int, Wageningen

    Google Scholar 

  • Verges VL, Sanford DV, Brown-Guedira G (2006) Heritability estimates and response to Selection for Fusarium head blight resistance in soft red winter wheat. Crop Sci 46:1587–1594

    Article  Google Scholar 

  • Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z (2010) Fine mapping Fhb4. a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 121:147–156

    Article  PubMed  Google Scholar 

  • Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  • Yu JB, Bai GH, Cai SB, Ban T (2006) Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet 113:308–320

    Article  PubMed  CAS  Google Scholar 

  • Yu JB, Bai GH, Cai SB, Dong YH, Ban T (2008a) New Fusarium head blight-resistant sources from Asian wheat germplasm. Crop Sci 48:1090–1097

    Article  Google Scholar 

  • Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008b) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98:87–94

    Article  PubMed  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Domier LL, Yao JB (2002) Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Hereditas 137:81–89

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Kolb FL, Yu J, Bai G, Boze LK, Domier LL (2004) Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137–1143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

US Wheat and Barley Scab Initiative provided part of funding for this project. Dr. Hongxiang Ma from Jiangsu Academy of Agricultural Science, Nanjing China provided Funo-related materials and Dr. Dadong Zhang from Kansas State University provided FHB data of Funo-related materials. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. Contribution 11-050-J from the Kansas Agricultural Experiment Station, Manhattan, Kansas, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Bai.

Additional information

Communicated by C. Feuillet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayatilake, D.V., Bai, G.H. & Dong, Y.H. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet 122, 1189–1198 (2011). https://doi.org/10.1007/s00122-010-1523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1523-2

Keywords

Navigation