Skip to main content
Log in

Uncertainty Principle for Free Metaplectic Transformation

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This study devotes to Heisenberg’s uncertainty inequalities of complex-valued functions in two free metaplectic transformation (FMT) domains without the assumption of orthogonality. In our latest work (Zhang in J Fourier Anal Appl 27(4):68, 2021), it is crucial that the FMT needs to be orthogonal for a decoupling of the cross terms. Instead of applying the orthogonality assumption, our current work uses the trace inequality for the product of symmetric matrices and positive semidefinite matrices to address the problem of coupling between cross terms. It formulates two types of lower bounds on the uncertainty product of complex-valued functions for two FMTs. The first one relies on the minimum eigenvalues of \(\textbf{A}_j^{\textrm{T}}\textbf{A}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j-\textbf{B}_j^{\textrm{T}}\textbf{A}_j\), while the other one relies on the minimum eigenvalues of \(\textbf{A}_j^{\textrm{T}}\textbf{A}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j,\textbf{B}_j^{\textrm{T}}\textbf{B}_j+\textbf{B}_j^{\textrm{T}}\textbf{A}_j\) and the maximum eigenvalues of \(\textbf{B}_j^{\textrm{T}}\textbf{A}_j\), where \(\textbf{A}_j,\textbf{B}_j\), \(j=1,2\) are the blocks found in symplectic matrices. Also, they are all relying on the covariance and absolute covariance. Sufficient conditions that truly give rise to the lower bounds are obtained. The theoretical results are verified by examples and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122(5), 1649–1658 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandeira, A.S., Lewis, M.E., Mixon, D.G.: Discrete uncertainty principles and sparse signal processing. J. Fourier Anal. Appl. 24(4), 935–956 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastiaans, M.J., Alieva, T.: The linear canonical transformation: definition and properties. In: Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T. (eds.) Linear Canonical Transforms: Theory and Applications, pp. 29–80. Springer, New York (2016)

    Chapter  MATH  Google Scholar 

  4. Chen, W., Fu, Z.W., Grafakos, L., Wu, Y.: Fractional Fourier transforms on \({L}^p\) and applications. Appl. Comput. Harmon. Anal. 55(11), 71–96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, L.: Time-Frequency Analysis: Theory and Applications. Prentice Hall, New Jersey (1995)

    Google Scholar 

  6. Cordero, E., Giacchi, G., Rodino, L.: Wigner analysis of operators. Part II: Schrödinger equations. arXiv:2208.00505v2 (2022)

  7. Cordero, E., Rodino, L.: Wigner analysis of operators. Part I: pseudodifferential operators and wave fronts. Appl. Comput. Harmon. Anal. 58(5), 85–123 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cordero, E., Rodino, L.: Characterization of modulation spaces by symplectic representations and applications to Schrödinger equations. J. Funct. Anal. 284(9), 109892 (2023)

    Article  MATH  Google Scholar 

  9. Dang, P., Deng, G.T., Qian, T.: A sharper uncertainty principle. J. Funct. Anal. 256(10), 2239–2266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dang, P., Deng, G.T., Qian, T.: A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Gosson, M.A.: Symplectic Geometry and Quantum Mechanics. Operator Theory: Advances and Applications, vol. 166. Birkhäuser Verlag, Basel (2006)

    Book  MATH  Google Scholar 

  12. de Gosson, M.A.: Quantum Harmonic Analysis: An Introduction. In: Xiao, J. (ed.) Advances in Analysis and Geometry, vol. 4. De Gruyter, Berlin (2021)

    Google Scholar 

  13. Dias, N.C., de Gosson, M.A., Prata, J.N.: A refinement of the Robertson-Schrödinger uncertainty principle and a Hirschman-Shannon inequality for Wigner distributions. J. Fourier Anal. Appl. 25(1), 210–241 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feichtinger, H.G.: On a new Segal algebra. Monatsh. Math. 92(4), 269–289 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feichtinger, H. G.: Modulation Spaces on Locally Compact Abelian Groups. Technical Report, University of Vienna (1983)

  17. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feichtinger, H.G.: Ingredients for applied Fourier analysis. In: Siddiqi, A.H., Singh, R.C., Veerappa Gowda, G.D. (eds.) Computational Science and Its Applications, pp. 1–24. CRC Press, Boca Raton (2020)

  19. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 120. Princeton University Press, New Jersey (1989)

    Google Scholar 

  21. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(26), 429–457 (1946)

    Google Scholar 

  23. Giacchi, G.: Metaplectic Wigner distributions. arXiv:2212.06818v3 (2023)

  24. Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996)

    Google Scholar 

  25. Gröchenig, K.H.: Time-frequency analysis and the uncertainty principle. In: Benedetto, J.J. (ed.) Foundations of Time-Frequency Analysis, pp. 21–36. Springer, New York (2001)

    Chapter  MATH  Google Scholar 

  26. Hardin, D.P., Northington V.M.C., Powell, A.M.: A sharp Balian-Low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmon. Anal. 44(2), 294–311 (2018)

  27. Jing, R., Liu, B., Li, R., Liu, R.: The \(N\)-dimensional uncertainty principle for the free metaplectic transformation. Mathematics 1685(8), 1–15 (2020)

    Google Scholar 

  28. Li, Y.G., Li, B.Z., Sun, H.F.: Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms. Abstr. Appl. Anal. 2014(470459) (2014)

  29. Luef, F., Rahbani, Z.: On pseudodifferential operators with symbols in generalized Shubin classes and an application to Landau-Weyl operators. Banach J. Math. Anal. 5(2), 59–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moshinsky, M.: Canonical transformations and quantum mechanics. SIAM J. Appl. Math. 25(2), 193–212 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sharma, K.K., Joshi, S.D.: Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 56(7), 2677–2683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tisza, L.: Applied Geometric Algebra. MIT OpenCourseWare, Boston (2009)

    Google Scholar 

  33. Vuojamo, V., Turunen, V., Orelma, H.: Time-frequency analysis in \(\mathbb{R} ^n\). J. Fourier Anal. Appl. 28(1), 6 (2022)

    Article  MATH  Google Scholar 

  34. Xu, G.L., Wang, X.T., Xu, X.G.: On uncertainty principle for the linear canonical transform of complex signals. IEEE Trans. Signal Process. 58(9), 4916–4918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, T.Z., Li, B.Z.: Linear Canonical Transform and Its Applications. Science Press, Beijing (2013)

    Google Scholar 

  36. Zhang, Z.C.: Tighter uncertainty principles for linear canonical transform in terms of matrix decomposition. Digit. Signal Process. 69(10), 70–85 (2017)

    Article  Google Scholar 

  37. Zhang, Z.C.: Uncertainty principle for real functions in free metaplectic transformation domains. J. Fourier Anal. Appl. 25(6), 2899–2922 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Z.C.: Uncertainty principle of complex-valued functions in specific free metaplectic transformation domains. J. Fourier Anal. Appl. 27(4), 68 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Z.C., Han, P.Y., Sun, Y., Wu, A.Y., Shi, X.Y., Qiang, S.Z., Jiang, X., Wang, G., Liu, L.B.: Heisenberg’s uncertainty principle for \(N\)-dimensional fractional Fourier transform of complex-valued functions. Optik 242(9), 167052 (2021)

    Article  Google Scholar 

  40. Zhang, Z.C., Shi, X.Y., Wu, A.Y., Li, D.: Sharper \(N\)-D Heisenberg’s uncertainty principle. IEEE Signal Process. Lett. 28(7), 1665–1669 (2021)

    Article  Google Scholar 

  41. Zhao, J., Tao, R., Wang, Y.: On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 90(9), 2686–2689 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the EiC Prof. Hans G. Feichtinger and anonymous referees for their insightful comments, questions, and suggestions that significantly improved the content of the manuscript and presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Zhang.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests to this work.

Additional information

Communicated by Maurice De Gosson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant No 61901223 and the Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No 2021K205B.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Uncertainty Principle for Free Metaplectic Transformation. J Fourier Anal Appl 29, 71 (2023). https://doi.org/10.1007/s00041-023-10052-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-023-10052-0

Keywords

Mathematics Subject Classification

Navigation