Skip to main content
Log in

Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This study devotes to the uncertainty principle under the free metaplectic transformation (an abbreviation of the metaplectic operator with a free symplectic matrix) of a real function. Covariance matrices in time, frequency and time–frequency domains are defined, and a relationship between these matrices and the free metaplectic transformation domain covariance is proposed. We then obtain two versions of lower bounds on the uncertainty product of the covariances of a real function in two free metaplectic transformation domains. It is shown here that a multivariable square integrable real-valued function cannot be both two free metaplectic transformations band limited. It is also seen that these two lower bounds depend not only on the minimum singular value of the blocks \({\mathbf {A}}_j,{\mathbf {B}}_j\), \(j=1,2\) found in free symplectic matrices but also on the covariance in time domain or in frequency domain. We thus reduce them to a new one which does not contain the covariances in time and frequency domains. Sufficient conditions that reach the lower bounds are derived. Example and simulation results are provided to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122(5), 1649–1658 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastiaans, M.J., Alieva, T.: The linear canonical transformation: Definition and properties. In: Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T. (eds.) Linear Canonical Transforms: Theory and Applications, pp. 29–80. Springer, New York (2016)

    Chapter  MATH  Google Scholar 

  3. Bultheel, A., Sulbaran, H.M.: Recent developments in the theory of the fractional fourier and linear canonical transforms. Bull. Belg. Math. Soc. 13(5), 971–1005 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60(9), 1168–1177 (1970)

    Article  Google Scholar 

  5. Dang, P., Deng, G.T., Qian, T.: A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dang, P., Deng, G.T., Qian, T.: A sharper uncertainty principle. J. Funct. Anal. 256(10), 2239–2266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Gosson, M.: Symplectic Geometry and Quantum Mechanics. Operator Theory: Advances and Applications, vol. 166. Birkhäuser, Basel (2006)

    Book  MATH  Google Scholar 

  8. Ding, J.J., Pei, S.C.: Heisenberg’s uncertainty principles for the 2-d nonseparable linear canonical transforms. Signal Process. 93(5), 1027–1043 (2013)

    Article  Google Scholar 

  9. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 120. Princeton University Press, New Jersey (1989)

    Book  MATH  Google Scholar 

  11. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gröchenig, K.: Time–frequency analysis and the uncertainty principle. In: Benedetto, J.J. (ed.) Foundations of Time–Frequency Analysis, pp. 21–36. Springer, New York (2001)

    Chapter  MATH  Google Scholar 

  13. Hardin, D.P., Northington, V., Powell, A.M.: A sharp balian-low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmon. Anal. 44(2), 294–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kou, K.I., Xu, R.H., Zhang, Y.H.: Paley–wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 35(17), 2122–2132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, fourier analysis and uncertainty ii. Bell Syst. Tech. J. 40(1), 65–84 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moshinsky, M.: Canonical transformations and quantum mechanics. SIAM J. Appl. Math. 25(2), 193–212 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moshinsky, M., Quesne, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1780 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Novotny, L., Hecht, B.: Principles of Nano-Optics, 1st edn. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  19. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)

    Google Scholar 

  20. Pei, S.-C., Ding, J.-J.: Two-dimensional affine generalized fractional fourier transform. IEEE Trans. Signal Process. 49(4), 878–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ricaud, B., Torrésani, B.: A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math. 40(3), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, K.K., Joshi, S.D.: Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 56(7), 2677–2683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Slepian, D.: Some comments on fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stern, A.: Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421–1425 (2006)

    Article  MATH  Google Scholar 

  25. Strichartz, R.S.: Uncertainty principles in harmonic analysis. J. Funct. Anal. 84(1), 97–114 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, S.-D., Kuo, T.-S., Hsu, C.-F.: Trace bounds on the solution of the algebraic matrix riccati and lyapunov equation. IEEE Trans. Autom. Control 31(7), 654–656 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, G.L., Wang, X.T., Xu, X.G.: Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Process. 3(1), 85–92 (2009)

    Article  MathSciNet  Google Scholar 

  28. Xu, G.L., Wang, X.T., Xu, X.G.: Uncertainty inequalities for linear canonical transform. IET Signal Process. 3(5), 392–402 (2009)

    Article  MathSciNet  Google Scholar 

  29. Xu, G.L., Wang, X.T., Xu, X.G.: On uncertainty principle for the linear canonical transform of complex signals. IEEE Trans. Signal Process. 58(9), 4916–4918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, Y., Kou, K.I.: Uncertainty principles for hyper complex signals in the linear canonical transform domains. Signal Process. 95(2), 67–75 (2014)

    Article  Google Scholar 

  31. Zayed, A.I.: Solution of the energy concentration problem in reproducing-kernel hilbert space. SIAM J. Appl. Math. 75(1), 21–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z.C.: Tighter uncertainty principles for linear canonical transform in terms of matrix decomposition. Digit. Signal Process. 69(10), 70–85 (2017)

    Article  Google Scholar 

  33. Zhang, Z.C.: Uncertainty principle for linear canonical transform using matrix decomposition of absolute spread matrix. Digit. Signal Process. 89(6), 145–154 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, F.Z., Zhang, Q.L.: Eigenvalue inequalities for matrix product. IEEE Trans. Autom. Control 51(9), 1506–1509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, J., Tao, R., Li, Y.L., Wang, Y.: Uncertainty principles for linear canonical transform. IEEE Trans. Signal Process. 57(7), 2856–2858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, J., Tao, R., Wang, Y.: On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 90(9), 2686–2689 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Startup Foundation for Introducing Talent of NUIST (Grant 2019r024) and the China Scholarship Council (CSC) joint Ph.D. student scholarship (Grant 201706240025). The author would also like to thank the anonymous reviewers for making many useful suggestions (especially the suggested mathematical terminology) to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Zhang.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Startup Foundation for Introducing Talent of NUIST (Grant 2019r024) and the China Scholarship Council (CSC) joint Ph.D. student scholarship (Grant 201706240025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains. J Fourier Anal Appl 25, 2899–2922 (2019). https://doi.org/10.1007/s00041-019-09686-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-019-09686-w

Keywords

Mathematics Subject Classification

Navigation