Skip to main content
Log in

Uncertainty Principle of Complex-Valued Functions in Specific Free Metaplectic Transformation Domains

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This study devotes to uncertainty principles under some specific free metaplectic transformations of complex-valued functions. Two versions of uncertainty inequalities in two orthogonal free metaplectic transformation domains are established. The first one provides a lower bound which is closely related to all the elements in the blocks \(\mathbf {A}_j,\mathbf {B}_j\), \(j=1,2\) found in symplectic matrices, while the other one depends on singular values of these four blocks by focusing on the orthonormal case. The latter is tighter than the existing forms for two categories, including the orthonormal free metaplectic transformation of all functions and two orthonormal free metaplectic transformations of real-valued functions. Conditions that truly reach these lower bounds are deduced. The proposed uncertainty principles can be reduced to the separable case, giving rise to uncertainty inequalities in two separable free metaplectic transformation domains. Examples and simulations are carried out to verify the correctness of the derived results, and finally possible applications in time-frequency analysis and optical system analysis are also given. As a result, this paper partly solved a concern on an extension to complex-valued functions mentioned in the conclusion of our previous work (Zhang in J Fourier Anal Appl 25:2899–2922, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122(5), 1649–1658 (1961)

    Article  MathSciNet  Google Scholar 

  2. Alieva, T., Bastiaans, M.J.: Alternative representation of the linear canonical integral transform. Opt. Lett. 30(24), 3302–3304 (2005)

    Article  Google Scholar 

  3. Alieva, T., Bastiaans, M.J.: Properties of the linear canonical integral transformation. J. Opt. Soc. Am. A 24(11), 3658–3665 (2007)

    Article  Google Scholar 

  4. Bastiaans, M.J., Alieva, T.: The linear canonical transformation: definition and properties. In: Healy, J.J., Kutay, M.A., Ozaktas, H.M., Sheridan, J.T. (eds.) Linear Canonical Transforms: Theory and Applications, pp. 29–80. Springer, New York (2016)

    Chapter  Google Scholar 

  5. Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the special affine Fourier transform. Appl. Comput. Harmon. Anal. 47(1), 30–52 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bultheel, A., Sulbaran, H.M.: Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc. 13(5), 971–1005 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Cordero, E., de Gosson, M.A., Nicola, F.: On the reduction of the interferences in the Born–Jordan distribution. Appl. Comput. Harmon. Anal. 44(2), 230–245 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dang, P., Deng, G.T., Qian, T.: A sharper uncertainty principle. J. Funct. Anal. 256(10), 2239–2266 (2013)

    Article  MathSciNet  Google Scholar 

  9. Dang, P., Deng, G.T., Qian, T.: A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  MathSciNet  Google Scholar 

  10. de Gosson, M.A.: Symplectic Geometry and Quantum Mechanics Operator Theory: Advances and Applications, vol. 166. Birkhäuser Verlag, Basel (2006)

    Book  Google Scholar 

  11. Dias, N.C., de Gosson, M.A., Prata, J.N.: A refinement of the Robertson–Schrödinger uncertainty principle and a Hirschman–Shannon inequality for Wigner distributions. J. Fourier Anal. Appl. 25(1), 210–241 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ding, J.J., Pei, S.C.: Heisenberg uncertainty principles for the 2-D nonseparable linear canonical transforms. Signal Process. 93(5), 1027–1043 (2013)

    Article  Google Scholar 

  13. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  14. Dragomir, S.S.: A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4(3), 1–142 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Feng, Q., Li, B.Z., Rassias, J.M.: Weighted Heisenberg–Pauli–Weyl uncertainty principles for the linear canonical transform. Signal Process. 165(12), 209–221 (2019)

    Article  Google Scholar 

  16. Folland, G.B.: Harmonic Analysis in Phase Space, vol. 120. Princeton University Press, New Jersey (1989)

    Book  Google Scholar 

  17. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  18. Führ, H., Gröchenig, K., Haimi, A., Klotz, A., Romero, J.L.: Density of sampling and interpolation in reproducing kernel Hilbert spaces. J. Lond. Math. Soc. 96(3), 663–686 (2017)

    Article  MathSciNet  Google Scholar 

  19. Gröchenig, K.: Time-frequency analysis and the uncertainty principle. In: Benedetto, J.J. (ed.) Foundations of Time-Frequency Analysis, pp. 21–36. Springer, New York (2001)

    Chapter  Google Scholar 

  20. Hardin, D.P., Northington, M.C., Powell, A.M.: A sharp Balian–Low uncertainty principle for shift-invariant spaces. Appl. Comput. Harmon. Anal. 44(2), 294–311 (2018)

    Article  MathSciNet  Google Scholar 

  21. Hogan, J. A., Lakey, J. D.: Uncertainty principles in mathematical physics. In Time-Frequency and Time-Scale Methods, pp. 285–357. Birkhäuser, Boston (2005)

  22. Kou, K.I., Xu, R.H., Zhang, Y.H.: Paley–Wiener theorems and uncertainty principles for the windowed linear canonical transform. Math. Methods Appl. Sci. 35(17), 2122–2132 (2012)

    Article  MathSciNet  Google Scholar 

  23. Li, Y.G., Li, B.Z., Sun, H.F.: Uncertainty principles for Wigner–Ville distribution associated with the linear canonical transforms. Abstr. Appl. Anal. 2014, 470459 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Moshinsky, M.: Canonical transformations and quantum mechanics. SIAM J. Appl. Math. 25(2), 193–212 (1973)

    Article  MathSciNet  Google Scholar 

  25. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)

    Google Scholar 

  26. Sharma, K.K., Joshi, S.D.: Uncertainty principle for real signals in the linear canonical transform domains. IEEE Trans. Signal Process. 56(7), 2677–2683 (2008)

    Article  MathSciNet  Google Scholar 

  27. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  Google Scholar 

  28. Stern, A.: Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A 25(3), 647–652 (2008)

    Article  MathSciNet  Google Scholar 

  29. Wei, D.Y., Yang, W.W., Li, Y.M.: Lattices sampling and sampling rate conversion of multidimensional bandlimited signals in the linear canonical transform domain. J. Franklin Inst. 356(13), 7571–7607 (2019)

    Article  MathSciNet  Google Scholar 

  30. Xu, G.L., Wang, X.T., Xu, X.G.: Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Process. 3(1), 85–92 (2009)

    Article  MathSciNet  Google Scholar 

  31. Xu, G.L., Wang, X.T., Xu, X.G.: Uncertainty inequalities for linear canonical transform. IET Signal Process. 3(5), 392–402 (2009)

    Article  MathSciNet  Google Scholar 

  32. Xu, G.L., Wang, X.T., Xu, X.G.: On uncertainty principle for the linear canonical transform of complex signals. IEEE Trans. Signal Process. 58(9), 4916–4918 (2010)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Kou, K.I.: Uncertainty principles for hyper complex signals in the linear canonical transform domains. Signal Process. 95(2), 67–75 (2014)

    Article  Google Scholar 

  34. Zhang, Z.C.: Tighter uncertainty principles for linear canonical transform in terms of matrix decomposition. Digit. Signal Process. 69(10), 70–85 (2017)

    Article  Google Scholar 

  35. Zhang, Z.C.: Convolution theorems for two-dimensional LCT of angularly periodic functions in polar coordinates. IEEE Signal Process. Lett. 26(8), 1242–1246 (2019)

    Article  Google Scholar 

  36. Zhang, Z. C.: \(N\)-dimensional Heisenberg’s uncertainty principle for fractional Fourier transform. arXiv:1906.05451v1, pp. 1–23 (2019)

  37. Zhang, Z.C.: Uncertainty principle for linear canonical transform using matrix decomposition of absolute spread matrix. Digit. Signal Process. 89(6), 145–154 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Z.C.: Uncertainty principle for real functions in free metaplectic transformation domains. J. Fourier Anal. Appl. 25(6), 2899–2922 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhao, J., Tao, R., Li, Y.L., Wang, Y.: Uncertainty principles for linear canonical transform. IEEE Trans. Signal Process. 57(7), 2856–2858 (2009)

    Article  MathSciNet  Google Scholar 

  40. Zhao, J., Tao, R., Wang, Y.: On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 90(9), 2686–2689 (2010)

    Article  Google Scholar 

  41. Zhao, L., Sheridan, J.T., Healy, J.J.: Unitary algorithm for nonseparable linear canonical transforms applied to iterative phase retrieval. IEEE Signal Process. Lett. 24(6), 814–817 (2017)

    Article  Google Scholar 

  42. Ziv, H., Richardson, D. J., Klösch, R.: The uncertainty principle in software engineering. In Proceedings of the 19th International Conference on Software Engineering. Massachusetts, Boston (1997)

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for making many useful suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Zhang.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interests.

Additional information

Communicated by Veluma Thangavelu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant No. 61901223, the Natural Science Foundation of Jiangsu Province under Grant No. BK20190769, the Jiangsu Planned Projects for Postdoctoral Research Funds, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No. 19KJB510041, the Jiangsu Province High-Level Innovative and Entrepreneurial Talent Introduction Program under Grant No. R2020SCB55, the Macau Young Scholars Program under Grant No. AM2020015, and the Startup Foundation for Introducing Talent of NUIST under Grant No. 2019r024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. Uncertainty Principle of Complex-Valued Functions in Specific Free Metaplectic Transformation Domains. J Fourier Anal Appl 27, 68 (2021). https://doi.org/10.1007/s00041-021-09867-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09867-6

Keywords

Mathematics Subject Classification

Navigation