Skip to main content
Log in

Abstract

This paper investigates the modular differential equation \(y''+sE_4y=0\) on the upper half-plane \({{\mathbb {H}}}\), where \(E_4\) is the weight 4 Eisenstein series and s is a complex parameter. This is equivalent to studying the Schwarz differential equation \(\{h,\tau \}=2sE_4\), where the unknown h is a meromorphic function on \({{\mathbb {H}}}\). On the other hand, such a solution h must satisfy \(h(\gamma \tau )=\varrho (\gamma )h(\tau )\) for \(\tau \in {{\mathbb {H}}}\), \(\gamma \in {\text{ SL}_2({{\mathbb {Z}}})}\) and \(\varrho \) being a \(2-\)dimensional complex representation of \({\text{ SL}_2({{\mathbb {Z}}})}\). Moreover, in order for h to be meromorphic or to have logarithmic singularities at the \({\text{ SL}_2({{\mathbb {Z}}})}\)-cusps of \({{\mathbb {H}}}\), it is necessary to have \(s=\pi ^2r^2\) with r being a rational number. For \(r=m/n\) in reduced form, it turns out that \(\varrho \) is irreducible with finite image if and only if \(2\le n\le 5\) and in this case h is a modular function for the genus zero torsion-free principal congruence group \({\Gamma }(n)\), while\(\varrho \) is reducible if and only if \(n=6\). By Solving an explicit algebraic system, we prove that solutions for any \(r=m/n\) can be built from a solution corresponding to \(r=1/n\), for \(2\le n\le 6\), by integrating certain weight 2 meromorphic modular forms. Together with the earlier work by the authors for r being an integer [20], this provides the solutions to the above-mentioned differential equations for all \(r=m/n\) with \(1\le n\le 6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chen, Z., Lin, C.-S., Yang, Y.: Modular ordinary differential equations on \({{\text{ SL}_2({\mathbb{Z} })}}\) of third order and applications. SIGMA Symmet. Integr. Geom. Methods Appl. 18, 013 (2022)

    Google Scholar 

  2. Elbasraoui, A., Sebbar, A.: Rational equivariant forms. Int. J. Number Th. 08(4), 963–981 (2012)

    Article  MathSciNet  Google Scholar 

  3. Elbasraoui, A., Sebbar, A.: Equivariant forms: Structure and geometry. Canad. Math. Bull. 56(3), 520–533 (2013)

    Article  MathSciNet  Google Scholar 

  4. Franc, C., Mason, G.: Hypergeometric series, modular linear differential equations and vector-valued modular forms. Ramanujan J. 41, 233–267 (2016)

    Article  MathSciNet  Google Scholar 

  5. Grabner, P.J.: Quasimodular forms as solutions of modular differential equations. Int. J. Number Theory 16(10), 2233–2274 (2020)

    Article  MathSciNet  Google Scholar 

  6. Hurwitz, A.: Adolf: Ueber die Differentialgleichungen dritter Ordnung, welchen die Formen mit linearen Transformationen in sich genügen. In: Mathematische Werke. Springer, Basel. https://doi.org/10.1007/978-3-0348-4161-0-15

  7. Kaneko, M., Zagier, D.: Supersingular \(j\)-invariants, hypergeometric series, and Atkin’s orthogonal polynomials. Computational perspectives on number theory (Chicago, IL, 1995), 97–126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI (1998)

  8. Kaneko, M., Koike, M.: On modular forms arising from a differential equation of hypergeometric type. Ramanujan J. 7(1–3), 145–164 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kaneko, M., Nagatomo, K., Sakai, Y.: The third order modular linear differential equations. J. Algebra 485, 332–352 (2017)

    Article  MathSciNet  Google Scholar 

  10. Klein, F.: Ueber Multiplicatorgleichungen. (German). Math. Ann. 15(1), 86–88 (1879)

    Article  MathSciNet  Google Scholar 

  11. Mathur, S., Mukhi, S., Sen, A.: On the classification of rational conformal field theories. Phys. Lett. B 213(3), 303–308 (1988)

    Article  MathSciNet  Google Scholar 

  12. McKay, J., Sebbar, A.: Fuchsian groups, automorphic functions and Schwarzians. Math. Ann. 318(2), 255–275 (2000)

    Article  MathSciNet  Google Scholar 

  13. McKay, J., Sebbar, A.: Fuchsian groups, automorphic functions and Schwarzians. Ramanujan J 17, 405–427 (2008)

    MathSciNet  Google Scholar 

  14. Milas, A.: Ramanujan’s “Lost Notebook’’ and the Virasoro algebra. Comm. Math. Phys. 251(3), 657–678 (2004)

    Article  MathSciNet  Google Scholar 

  15. Nakaya, T.: On modular solutions of certain modular differential equation and supersingular polynomials. Ramanujan J. 48(1), 13–20 (2019)

    Article  MathSciNet  Google Scholar 

  16. Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc. 55(1949), 545–551 (1949)

    Article  MathSciNet  Google Scholar 

  17. Rankin, R.: Modular Forms and Functions. Cambridge Univ. Press, Cambridge (1977)

    Book  Google Scholar 

  18. Saber, H., Sebbar, A.: Automorphic Schwarzian equations. Forum Math. 32(6), 1621–1636 (2020)

    Article  MathSciNet  Google Scholar 

  19. Saber, H., Sebbar, A.: Automorphic Schwarzian equations and integrals of weight 2 forms. Ramanujan J. 57(2), 551–568 (2022)

    Article  MathSciNet  Google Scholar 

  20. Saber, H., Sebbar, A.: Equivariant solutions to modular Schwarzian equations. J. Math. Anal. Appl. 508(2), 125887 (2022)

    Article  MathSciNet  Google Scholar 

  21. Saber, H., Sebbar, A.: On the modularity of solutions to certain differential equations of hypergeometric type. Bull. Aust. Math. Soc. 105(3), 385–391 (2022)

    Article  MathSciNet  Google Scholar 

  22. Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable, II Geometric theory. Wolters-Noordhoff Publishing, Groningen (1969)

    Google Scholar 

  23. Sebbar, A., Saber, H.: On the critical points of modular forms. J. Number Theory 132(8), 1780–1787 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sebbar, A., Saber, H.: Equivariant functions and vector-valued modular forms. Int. J. Number Theory 10(4), 949–954 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sebbar, A., Saber, H.: On the existence of vector-valued automorphic forms. Kyushu J. Math. 71(2), 271–285 (2017)

    Article  MathSciNet  Google Scholar 

  26. Van der Pol, B.: On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications. I. Nederl. Akad. Wetensch. Proc. Ser. A. 13, 261–271 (1951)

    MathSciNet  Google Scholar 

  27. Van der Pol, B.: On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications, II. Indagationes Math. 13, 272–284 (1951)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Saber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, H., Sebbar, A. Modular differential equations and algebraic systems. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 100 (2024). https://doi.org/10.1007/s13398-024-01602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-024-01602-2

Keywords

Mathematics Subject Classification

Navigation