Skip to main content
Log in

Dual Integrable Representations on Locally Compact Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Studies of various reproducing function systems emphasized the role of translations and the Fourier periodization function. These influenced the development of the concept of dual integrable representations, a large and important class of unitary representations on LCA groups. The key ingredient is the bracket function that enables the explicit description of corresponding cyclic spaces. Since its introduction, the notion was extended to some specific classes of non-abelian groups, and a natural problem emerged, i.e., whether it can be extended to the entire class of (including non-abelian) locally compact groups. In this paper we solve this problem. Interestingly enough, the bracket function (or rather an operator in this case) keeps all of its useful properties, except the Cauchy-Schwarz inequality. Nevertheless, we show that cyclic spaces still can be represented in terms of bracket-weighted spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Continuous frames in Hilbert spaces. Ann. Phys. 222(1), 1–37 (1993). https://doi.org/10.1006/aphy.1993.1016

    Article  ADS  MathSciNet  Google Scholar 

  2. Arsac, G.: Sur l’espace de Banach engendre par les coefficients d’une représentation unitaire. Publ. Dép. Math., Lyon 13(2), 1–101 (1976)

    MathSciNet  Google Scholar 

  3. Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for the Heisenberg group and the characterization of cyclic subspaces. Appl. Comput. Harmon. Anal. 37(2), 218–234 (2014). https://doi.org/10.1016/j.acha.2013.12.002

    Article  MathSciNet  Google Scholar 

  4. Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015). https://doi.org/10.1016/j.acha.2014.09.007

    Article  MathSciNet  Google Scholar 

  5. Barbieri, D., Hernández, E., Paternostro, V.: The Zak transform and the structure of spaces invariant by the action of an LCA group. J. Funct. Anal. 269(5), 1327–1358 (2015). https://doi.org/10.1016/j.jfa.2015.06.009

    Article  MathSciNet  Google Scholar 

  6. Barbieri, D., Hernández, E., Paternostro, V.: Spaces invariant under unitary representations of discrete groups. J. Math. Anal. Appl. 492(1), 124357 (2020). https://doi.org/10.1016/j.jmaa.2020.124357. (32 p.)

    Article  MathSciNet  Google Scholar 

  7. Bekka, B., de la Harpe, P.: Unitary representations of groups, duals, and characters, Mathematical Surveys and Monographs, vol. 250. American Mathematical Society, Providence, RI (2020)

    Book  Google Scholar 

  8. Beutler, F.J.: The operator theory of the pseudoinverse. II: Unbounded operators with arbitrary range. J. Math. Anal. Appl. 10, 471–493 (1965). https://doi.org/10.1016/0022-247X(65)90108-3

    Article  MathSciNet  Google Scholar 

  9. Beutler, F.J., Root, W.L.: The operator pseudoinverse in control and systems identification. Gen. Inverses Appl., Proc. adv. Semin., Madison 1973, 397–494 (1976)

    MathSciNet  Google Scholar 

  10. Carey, A.L.: Square-integrable representations of non-unimodular groups. Bull. Aust. Math. Soc. 15, 1–12 (1976). https://doi.org/10.1017/S0004972700036728

    Article  ADS  MathSciNet  Google Scholar 

  11. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser/Springer, Basel (2016)

    Google Scholar 

  12. Combes, F.: Poids associé à une algébre hilbertienne á gauche. Compos. Math. 23, 49–77 (1971)

    Google Scholar 

  13. Connes, A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35, 153–164 (1980). https://doi.org/10.1016/0022-1236(80)90002-6

    Article  MathSciNet  Google Scholar 

  14. Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis. Springer, Berlin (2009)

    Google Scholar 

  15. Dixmier, J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. Fr. 81, 9–39 (1953). https://doi.org/10.24033/bsmf.1436

    Article  Google Scholar 

  16. Duflo, M., Moore, C.C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal. 21, 209–243 (1976). https://doi.org/10.1016/0022-1236(76)90079-3

    Article  MathSciNet  Google Scholar 

  17. Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. Fr. 92, 181–236 (1964). https://doi.org/10.24033/bsmf.1607

    Article  Google Scholar 

  18. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    Google Scholar 

  19. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms. Springer, Berlin (2005)

    Book  Google Scholar 

  20. Gómez-Cubillo, F.: Admissible vectors and Radon-Nikodym theorems (2021). https://arxiv.org/abs/2009.05962v2 (withdrawn from the arXiv)

  21. Greenleaf, F., Moskowitz, M.: Cyclic vectors for representations of locally compact groups. Math. Ann. 190, 265–288 (1971). https://doi.org/10.1007/BF01431155

    Article  MathSciNet  Google Scholar 

  22. Grosmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I: General results. J. Math. Phys. 26, 2473–2479 (1985). https://doi.org/10.1063/1.526761

    Article  ADS  MathSciNet  Google Scholar 

  23. Haagerup, U.: \(L^p\)-spaces associated with an arbitrary von Neumann algebra, Algebres d’operateurs et leurs applications en physique mathematique, Colloq. int. CNRS No. 274, Marseille 1977, 175–184 (1979)

  24. Heil, C.E.: A Basis Theory Primer, Expanded Birkhäuser, Switzerland (2011)

    Book  Google Scholar 

  25. Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform. Colloq. Math. 118(1), 313–332 (2010). https://doi.org/10.4064/cm118-1-17

    Article  MathSciNet  Google Scholar 

  26. Hernández, E., Luthy, P.M., Šikić, H., Soria, F., Wilson, E.N.: Spaces Generated by Orbits of Unitary Representations: A Tribute to Guido Weiss. J. Geom. Anal. 31(9), 8735–8761 (2021). https://doi.org/10.1007/s12220-020-00396-0

    Article  MathSciNet  Google Scholar 

  27. Hilsum, M.: Les espaces \(L^p\) d’une algèbre de von Neumann définies par la derivée spatiale. J. Funct. Anal. 40, 151–169 (1981). https://doi.org/10.1016/0022-1236(81)90065-3

    Article  MathSciNet  Google Scholar 

  28. Iverson, J.W.: Subspaces of \(L^2(G)\) invariant under translation by an abelian subgroup. J. Funct. Anal. 269(3), 862–913 (2015). https://doi.org/10.1016/j.jfa.2015.03.020

    Article  Google Scholar 

  29. Iverson, J.W.: Frames generated by compact group actions. Trans. Amer. Math. Soc. 370(1), 509–551 (2018). https://doi.org/10.1090/tran/6954

    Article  MathSciNet  Google Scholar 

  30. Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)

    Google Scholar 

  31. Kaniuth, E., Lau, A.T.-M.: Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, 231. American Mathematical Society, Providence, RI (2018)

    Book  Google Scholar 

  32. Kunze, R.A.: \(L^p\) Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc. 89, 519–540 (1958). https://doi.org/10.2307/1993198

    Article  MathSciNet  Google Scholar 

  33. Larson, D., Schulz, E., Speegle, D., Taylor, K.: Explicit cross sections of singly generated group actions, In: Harmonic analysis and applications. In Honor of John J. Benedetto. Basel: Birkhäuser, pp. 209–230 (2006)

  34. Moore, C.C.: Square integrable primary representations. Pacific J. Math. 70, 413–427 (1977). https://doi.org/10.2140/pjm.1977.70.413

    Article  MathSciNet  Google Scholar 

  35. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974). https://doi.org/10.1016/0022-1236(74)90014-7

    Article  MathSciNet  Google Scholar 

  36. Rieffel, M.A.: Integrable and proper actions on \(C^*\)-algebras, and square-integrable representations of groups. Expo. Math. 22(1), 1–53 (2004). https://doi.org/10.1016/S0723-0869(04)80002-1

    Article  MathSciNet  Google Scholar 

  37. Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. 57(2), 401–457 (1953). https://doi.org/10.2307/1969729

    Article  MathSciNet  Google Scholar 

  38. Šikić, H., Slamić, I.: Maximal cyclic subspaces for dual integrable representations. J. Math. Anal. Appl. 511(1), 126071 (2022). https://doi.org/10.1016/j.jmaa.2022.126071

    Article  MathSciNet  Google Scholar 

  39. Stinespring, W.F.: Integration theorems for gages and duality for unimodular groups. Trans. Amer. Math. Soc. 90, 15–56 (1959). https://doi.org/10.1090/S0002-9947-1959-0102761-9

    Article  MathSciNet  Google Scholar 

  40. Takesaki, M.: Theory of Operator Algebras I, II. Springer, Berlin (2003)

    Book  Google Scholar 

  41. Taylor, K.F.: Groups with atomic regular representation, In: Representations, wavelets, and frames. A celebration of the mathematical work of Lawrence W. Baggett, pp. 33–45. Birkhäuser, Basel (2008). https://doi.org/10.1007/978-0-8176-4683-7_3

  42. Terp, M.: \(L^p\)-Fourier transformation on non-unimodular locally compact groups. Adv. Oper. Theory 2(4), 547–583 (2017). https://doi.org/10.22034/AOT.1709-1231

    Article  MathSciNet  Google Scholar 

  43. Weber, E.: Wavelet transforms and admissible group representations, In: Representations, wavelets, and frames. A celebration of the mathematical work of Lawrence W, pp. 47–67. Baggett, Birkhäuser, Basel (2008). https://doi.org/10.1007/978-0-8176-4683-7_4

    Book  Google Scholar 

  44. Weiss, G., Wilson, E.N.: The Mathematical Theory of Wavelets. NATO Sci. Ser. II. Math. Phys. Chem. 33, 329–366 (2001)

    MathSciNet  Google Scholar 

  45. Wiersma, M.: \(L^p\)-Fourier and Fourier-Stieltjes algebras for locally compact groups. J. Funct. Anal. 269(12), 3928–3951 (2015). https://doi.org/10.1016/j.jfa.2015.09.016

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank anonymous referees for valuable suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Slamić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šikić, H., Slamić, I. Dual Integrable Representations on Locally Compact Groups. J Geom Anal 34, 91 (2024). https://doi.org/10.1007/s12220-023-01529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01529-x

Keywords

Mathematics Subject Classification

Navigation