Weinreb PH, Zhen W, Poon AW et al (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715. doi:10.1021/bi961799n
CAS
PubMed
Article
Google Scholar
Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764. doi:10.1016/j.sbi.2008.10.002
CAS
PubMed
Article
Google Scholar
Radivojac P, Iakoucheva LM, Oldfield CJ et al (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456. doi:10.1529/biophysj.106.094045
PubMed Central
CAS
PubMed
Article
Google Scholar
Iakoucheva LM, Brown CJ, Lawson JD et al (2002) Intrinsic Disorder in Cell-signaling and Cancer-associated Proteins. J Mol Biol 323:573–584. doi:10.1016/S0022-2836(02)00969-5
CAS
PubMed
Article
Google Scholar
Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384. doi:10.1002/jmr.747
CAS
PubMed
Article
Google Scholar
Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148. doi:10.1111/j.1742-4658.2005.04948.x
CAS
PubMed
Article
Google Scholar
Agashe VR, Guha S, Chang H-C et al (2004) Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199–209
CAS
PubMed
Article
Google Scholar
Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU (1999) Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol 6:697–705. doi:10.1038/10754
CAS
PubMed
Article
Google Scholar
Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292
PubMed Central
CAS
PubMed
Google Scholar
Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388:343–349. doi:10.1038/41024
CAS
PubMed
Article
Google Scholar
Schumacher RJ, Hurst R, Sullivan WP et al (1994) ATP-dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269:9493–9499
CAS
PubMed
Google Scholar
Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647. doi:10.1146/annurev.biochem.70.1.603
CAS
PubMed
Article
Google Scholar
Kim S, Schilke B, Craig EA, Horwich AL (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc Natl Acad Sci 95:12860–12865
PubMed Central
CAS
PubMed
Article
Google Scholar
Crombie T, Boyle JP, Coggins JR, Brown AJ (1994) The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol-phosphate synthase. Eur J Biochem 226:657–664
CAS
PubMed
Article
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. doi:10.1038/nature10317
CAS
PubMed
Article
Google Scholar
Kim YE, Hipp MS, Bracher A et al (2013) Molecular Chaperone Functions in Protein Folding and Proteostasis. Annu Rev Biochem 82:323–355. doi:10.1146/annurev-biochem-060208-092442
CAS
PubMed
Article
Google Scholar
Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nature Publishing Group 11:777–788. doi:10.1038/nrm2993
CAS
Google Scholar
Guerriero CJ, Brodsky JL (2012) The Delicate Balance Between Secreted Protein Folding and Endoplasmic Reticulum-Associated Degradation in Human Physiology. 92:537–576. doi:10.1152/physrev.00027.2011
CAS
Google Scholar
Westerheide SD, Raynes R, Powell C et al (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci 13:86–103
CAS
PubMed
Article
Google Scholar
Chen B, Retzlaff M, Roos T, Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3:a004374–a004375. doi:10.1101/cshperspect.a004374
PubMed Central
PubMed
Article
CAS
Google Scholar
Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3:a004440–a004441. doi:10.1101/cshperspect.a004440
PubMed Central
PubMed
Article
CAS
Google Scholar
Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438. doi:10.1101/gad.1657108
PubMed Central
CAS
PubMed
Article
Google Scholar
Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. 1–11. doi: 10.1038/nrm2938
Westerheide SD, Morimoto RI (2005) Heat Shock Response Modulators as Therapeutic Tools for Diseases of Protein Conformation. J Biol Chem 280:33097–33100. doi:10.1074/jbc.R500010200
CAS
PubMed
Article
Google Scholar
Lin JH, Walter P, Yen TSB (2008) Endoplasmic Reticulum Stress in Disease Pathogenesis. Annu Rev Pathol Mech Dis 3:399–425. doi:10.1146/annurev.pathmechdis.3.121806.151434
CAS
Article
Google Scholar
Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199
CAS
PubMed
Article
Google Scholar
Lodish H, Berk A, Matsudaira P et al (2003) Molecular Cell Biology, 5 edn. pp 1–968
Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96. doi:10.1038/415092a
CAS
PubMed
Article
Google Scholar
Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891
CAS
PubMed
Article
Google Scholar
Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404
CAS
PubMed
Article
Google Scholar
Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206
CAS
PubMed
Article
Google Scholar
Mori K, Ma W, Gething MJ, Sambrook J (1993) A transmembrane protein with a cdc2 +/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74:743–756
CAS
PubMed
Article
Google Scholar
Shaffer AL, Shapiro-Shelef M, Iwakoshi NN et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93. doi:10.1016/j.immuni.2004.06.010
CAS
PubMed
Article
Google Scholar
Okada T, Yoshida H, Akazawa R et al (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366:585–594. doi:10.1042/BJ20020391
PubMed Central
CAS
PubMed
Article
Google Scholar
Travers KJ, Patil CK, Wodicka L et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258
CAS
PubMed
Article
Google Scholar
Ye J, Rawson RB, Komuro R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364
CAS
PubMed
Article
Google Scholar
Haze K, Yoshida H, Yanagi H et al (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799
PubMed Central
CAS
PubMed
Article
Google Scholar
Wu J, Rutkowski DT, Dubois M et al (2007) ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364. doi:10.1016/j.devcel.2007.07.005
CAS
PubMed
Article
Google Scholar
Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767
PubMed Central
CAS
PubMed
Article
Google Scholar
Scheuner D, Song B, McEwen E et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176
CAS
PubMed
Article
Google Scholar
Harding HP, Novoa I, Zhang Y et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108
CAS
PubMed
Article
Google Scholar
Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274. doi:10.1038/16729
CAS
PubMed
Article
Google Scholar
Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151:1163–1167. doi:10.1016/j.cell.2012.11.012
PubMed Central
CAS
PubMed
Article
Google Scholar
Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3:a007526–a007527. doi:10.1101/cshperspect.a007526
PubMed Central
PubMed
Article
CAS
Google Scholar
Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957. doi:10.1038/nrm2546
PubMed Central
CAS
PubMed
Article
Google Scholar
Määttänen P, Gehring K, Bergeron JJM, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21:500–511. doi:10.1016/j.semcdb.2010.03.006
PubMed
Article
CAS
Google Scholar
Goeckeler JL, Brodsky JL (2010) Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation. Diabetes Obes Metab 12:32–38. doi:10.1111/j.1463-1326.2010.01273.x
PubMed Central
CAS
PubMed
Article
Google Scholar
Dong M, Bridges JP, Apsley K et al (2008) ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol Biol Cell 19:2620–2630. doi:10.1091/mbc.E07-07-0674
PubMed Central
CAS
PubMed
Article
Google Scholar
Nishikawa SI, Fewell SW, Kato Y et al (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070
PubMed Central
CAS
PubMed
Article
Google Scholar
Schmitz A, Maintz M, Kehle T, Herzog V (1995) In vivo iodination of a misfolded proinsulin reveals co-localized signals for Bip binding and for degradation in the ER. EMBO J 14:1091–1098
PubMed Central
CAS
PubMed
Google Scholar
Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci 92:1764–1768
PubMed Central
CAS
PubMed
Article
Google Scholar
Otero JH, Lizák B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21:472–478. doi:10.1016/j.semcdb.2009.12.008
PubMed Central
CAS
PubMed
Article
Google Scholar
Blond-Elguindi S, Cwirla SE, Dower WJ et al (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728
CAS
PubMed
Article
Google Scholar
Petrova K, Oyadomari S, Hendershot LM, Ron D (2008) Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J 27:2862–2872. doi:10.1038/emboj.2008.199
PubMed Central
CAS
PubMed
Article
Google Scholar
Jin Y, Awad W, Petrova K, Hendershot LM (2008) Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J 27:2873–2882. doi:10.1038/emboj.2008.207
PubMed Central
CAS
PubMed
Article
Google Scholar
Weitzmann A, Volkmer J, Zimmermann R (2006) The nucleotide exchange factor activity of Grp170 may explain the non-lethal phenotype of loss of Sil1 function in man and mouse. FEBS Lett 580:5237–5240. doi:10.1016/j.febslet.2006.08.055
CAS
PubMed
Article
Google Scholar
Chung KT, Shen Y, Hendershot LM (2002) BAP, a Mammalian BiP-associated Protein, Is a Nucleotide Exchange Factor That Regulates the ATPase Activity of BiP. J Biol Chem 277:47557–47563. doi:10.1074/jbc.M208377200
CAS
PubMed
Article
Google Scholar
Liberek K, Marszalek J, Ang D et al (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci 88:2874–2878
PubMed Central
CAS
PubMed
Article
Google Scholar
Jin Y, Zhuang M, Hendershot LM (2009) ERdj3, a Luminal ER DnaJ Homologue, Binds Directly to Unfolded Proteins in the Mammalian ER: identification of Critical Residues. Biochemistry 48:41–49. doi:10.1021/bi8015923
PubMed Central
CAS
PubMed
Article
Google Scholar
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. doi:10.1146/annurev.biochem.78.081507.101607
PubMed Central
CAS
PubMed
Article
Google Scholar
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425
CAS
PubMed
Article
Google Scholar
Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439. doi:10.1146/annurev.genet.30.1.405
CAS
PubMed
Article
Google Scholar
Raasi S, Orlov I, Fleming KG, Pickart CM (2004) Binding of Polyubiquitin Chains to Ubiquitin-associated (UBA) Domains of HHR23A. J Mol Biol 341:1367–1379. doi:10.1016/j.jmb.2004.06.057
CAS
PubMed
Article
Google Scholar
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. doi:10.1093/emboj/19.1.94
PubMed Central
CAS
PubMed
Article
Google Scholar
Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407. doi:10.1038/nature01071
CAS
PubMed
Article
Google Scholar
Verma R, Aravind L, Oania R et al (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615. doi:10.1126/science.1075898
CAS
PubMed
Article
Google Scholar
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH (2002) MPN + , a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 3:28
PubMed Central
PubMed
Article
Google Scholar
Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371. doi:10.1074/jbc.274.6.3363
CAS
PubMed
Article
Google Scholar
Mizushima N (2012) Autophagy in Protein and Organelle Turnover. Cold Spring Harb Symp Quant Biol 76:397–402. doi:10.1101/sqb.2011.76.011023
Article
CAS
Google Scholar
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. 147:728–741. doi: 10.1016/j.cell.2011.10.026
Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–32
Google Scholar
Huang J, Klionsky DJ (2007) Autophagy and human disease. cell cycle 6:1837–1849. doi:10.4161/cc.6.15.4511
CAS
PubMed
Article
Google Scholar
Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2:a006734–a006735. doi:10.1101/cshperspect.a006734
PubMed Central
CAS
PubMed
Article
Google Scholar
Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L (2014) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–1185. doi:10.4161/auto.5.8.10274
Article
Google Scholar
Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437. doi:10.1038/ncb1991
CAS
PubMed
Article
Google Scholar
Wang H, Liu J, Zong Y et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174. doi:10.1016/j.brainres.2010.08.023
CAS
PubMed
Article
Google Scholar
Ravikumar B, Moreau K, Jahreiss L et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12:747–757. doi:10.1038/ncb2078
PubMed Central
CAS
PubMed
Article
Google Scholar
Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701. doi:10.1083/jcb.200803137
PubMed Central
CAS
PubMed
Article
Google Scholar
Nazarko TY, Ozeki K, Till A et al (2014) Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 204:541–557. doi:10.1083/jcb.201307050
PubMed Central
CAS
PubMed
Article
Google Scholar
Motley AM, Nuttall JM, Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31:2852–2868. doi:10.1038/emboj.2012.151
PubMed Central
CAS
PubMed
Article
Google Scholar
Nazarko VY, Nazarko TY, Farre J-C et al (2011) Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7:375–385. doi:10.4161/auto.7.4.14369
PubMed Central
CAS
PubMed
Article
Google Scholar
Suzuki K, Kondo C, Morimoto M, Ohsumi Y (2010) Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J Biol Chem 285:30019–30025. doi:10.1074/jbc.M110.143511
PubMed Central
CAS
PubMed
Article
Google Scholar
Kanki T, Wang K, Baba M et al (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20:4730–4738. doi:10.1091/mbc.E09-03-0225
PubMed Central
CAS
PubMed
Article
Google Scholar
Kanki T, Wang K, Cao Y et al (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109. doi:10.1016/j.devcel.2009.06.014
PubMed Central
CAS
PubMed
Article
Google Scholar
Farre J-C, Manjithaya R, Mathewson RD, Subramani S (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376. doi:10.1016/j.devcel.2007.12.011
PubMed Central
CAS
PubMed
Article
Google Scholar
Stasyk OV, Stasyk OG, Mathewson RD et al (2006) Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy 2:30–38. doi:10.4161/auto.2226
CAS
PubMed
Article
Google Scholar
Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 356:405–410. doi:10.1016/j.bbrc.2007.02.150
CAS
PubMed
Article
Google Scholar
Kawamata T, Kamada Y, Suzuki K et al (2005) Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338:1884–1889. doi:10.1016/j.bbrc.2005.10.163
CAS
PubMed
Article
Google Scholar
Klionsky DJ, Cregg JM, Dunn WA et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545
CAS
PubMed
Article
Google Scholar
Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822. doi:10.1038/ncb0910-814
PubMed Central
CAS
PubMed
Article
Google Scholar
Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109. doi:10.1038/ncb1007-1102
CAS
PubMed
Article
Google Scholar
Mijaljica D, Prescott M, Devenish RJ (2014) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682. doi:10.4161/auto.7.7.14733
Article
CAS
Google Scholar
Koga H, Martinez-Vicente M, Macian F et al (2011) A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun 2:386. doi:10.1038/ncomms1393
PubMed Central
PubMed
Article
CAS
Google Scholar
Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503
CAS
PubMed
Article
Google Scholar
Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382–385
CAS
PubMed
Article
Google Scholar
Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263:6797–6805
CAS
PubMed
Google Scholar
Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834
PubMed Central
CAS
PubMed
Article
Google Scholar
Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456. doi:10.1074/jbc.M001394200
CAS
PubMed
Google Scholar
Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. doi:10.1038/nature04724
CAS
PubMed
Article
Google Scholar
Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. 441:880–884. doi:10.1038/nature04723
CAS
Google Scholar
Ding Q, Dimayuga E, Martin S et al (2004) Characterization of chronic low-level proteasome inhibition on neural homeostasis. J Neurochem 86:489–497. doi:10.1046/j.1471-4159.2003.01885.x
Article
CAS
Google Scholar
Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863. doi:10.1038/nature05853
CAS
PubMed
Article
Google Scholar
Massey AC, Kaushik S, Sovak G et al (2006) Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci 103:5805–5810. doi:10.1073/pnas.0507436103
PubMed Central
CAS
PubMed
Article
Google Scholar
Escusa-Toret S, Vonk WIM, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15:1231–1243. doi:10.1038/ncb2838
PubMed Central
CAS
PubMed
Article
Google Scholar
Malinovska L, Kroschwald S, Munder MC et al (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23:3041–3056. doi:10.1091/mbc.E12-03-0194
PubMed Central
CAS
PubMed
Article
Google Scholar
Liu X-D, Ko S, Xu Y et al (2012) Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress. J Biol Chem 287:19687–19698. doi:10.1074/jbc.M112.350934
PubMed Central
CAS
PubMed
Article
Google Scholar
Specht S, Miller SBM, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195:617–629. doi:10.1083/jcb.201106037
PubMed Central
CAS
PubMed
Article
Google Scholar
Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095. doi:10.1038/nature07195
PubMed Central
CAS
PubMed
Article
Google Scholar
Szeto J, Kaniuk NA, Canadien V et al (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199
CAS
PubMed
Article
Google Scholar
Sontag EM, Vonk WI, Frydman J (2014) Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 26:139–146. doi:10.1016/j.ceb.2013.12.006
PubMed Central
CAS
PubMed
Article
Google Scholar
Bagola K, Sommer T (2008) Protein quality control: on IPODs and other JUNQ. Curr Biol 18:R1019–R1021. doi:10.1016/j.cub.2008.09.036
CAS
PubMed
Article
Google Scholar
Ogrodnik M, Salmonowicz H, Brown R et al (2014) Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. Proc Natl Acad Sci 111:8049–8054. doi:10.1073/pnas.1324035111
PubMed Central
CAS
PubMed
Article
Google Scholar
Weisberg SJ, Lyakhovetsky R, Werdiger A-C et al (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci USA 109:15811–15816. doi:10.1073/pnas.1205829109
PubMed Central
CAS
PubMed
Article
Google Scholar
Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898
PubMed Central
CAS
PubMed
Article
Google Scholar
Johnston JA, Illing ME, Kopito RR (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil Cytoskeleton 53:26–38. doi:10.1002/cm.10057
CAS
PubMed
Article
Google Scholar
Canadien V, Tan T, Zilber R et al (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174:2471–2475. doi:10.4049/jimmunol.174.5.2471
CAS
PubMed
Article
Google Scholar
Nyström T (2010) Spatial protein quality control and the evolution of lineage-specific ageing. Philos Trans Royal Soc B Bio Sci 366:71–75. doi:10.1098/rstb.2010.0282
Article
CAS
Google Scholar
Sabate R, de Groot NS, Ventura S (2010) Protein folding and aggregation in bacteria. Cell Mol Life Sci 67:2695–2715. doi:10.1007/s00018-010-0344-4
CAS
PubMed
Article
Google Scholar
Coelho M, Dereli A, Haese A et al (2013) Fission Yeast Does Not Age under Favorable Conditions, but Does So after Stress. Curr Biol 23:1844–1852. doi:10.1016/j.cub.2013.07.084
CAS
PubMed
Article
PubMed Central
Google Scholar
Liu B, Larsson L, Caballero A et al (2010) The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates. Cell 140:257–267. doi:10.1016/j.cell.2009.12.031
CAS
PubMed
Article
Google Scholar
Rokney A, Shagan M, Kessel M et al (2009) E. coli Transports Aggregated Proteins to the Poles by a Specific and Energy-Dependent Process. J Mol Biol 392:589–601. doi:10.1016/j.jmb.2009.07.009
CAS
PubMed
Article
Google Scholar
Erjavec N, Cvijovic M, Klipp E, Nyström T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA 105:18764–18769. doi:10.1073/pnas.0804550105
PubMed Central
CAS
PubMed
Article
Google Scholar
Lindner AB, Madden R, Demarez A et al (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105:3076–3081. doi:10.1073/pnas.0708931105
PubMed Central
CAS
PubMed
Article
Google Scholar
Spokoini R, Moldavski O, Nahmias Y et al (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2:738–747. doi:10.1016/j.celrep.2012.08.024
CAS
PubMed
Article
Google Scholar
Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nature Publishing Group 15:384–396. doi:10.1038/nrm3810
CAS
Google Scholar
Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60. doi:10.1038/nrn1007
CAS
PubMed
Article
Google Scholar
Andersson V, Hanzén S, Liu B et al (2013) Enhancing protein disaggregation restores proteasome activity in aged cells. Aging (Albany NY) 5:802–812
CAS
Google Scholar
Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. doi:10.1016/j.cell.2010.10.007
PubMed Central
CAS
PubMed
Article
Google Scholar
Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci 106:14914–14919. doi:10.1073/pnas.0902882106
PubMed Central
CAS
PubMed
Article
Google Scholar
Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J 21:2672–2682. doi:10.1096/fj.06-6751com
PubMed Central
CAS
PubMed
Article
Google Scholar
(2005) Altered proteasome structure, function, and oxidation in aged muscle. 19:644–646. doi: 10.1096/fj.04-2578fje
Cuervo AM, Dice JF (2000) Age-related Decline in Chaperone-mediated Autophagy. J Biol Chem 275:31505–31513. doi:10.1074/jbc.M002102200
CAS
PubMed
Article
Google Scholar
Vittorini S, Paradiso C, Donati A et al (1999) The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities. J Gerontol Series A Bio Sci Med Sci 54:B318–B323
CAS
Article
Google Scholar
Gupta R, Kasturi P, Bracher A et al (2011) Firefly luciferase mutants as sensors of proteome stress. Nat Methods 8:879–884. doi:10.1038/nmeth.1697
CAS
PubMed
Article
Google Scholar
Olzscha H, Schermann SM, Woerner AC et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78. doi:10.1016/j.cell.2010.11.050
CAS
PubMed
Article
Google Scholar
Gidalevitz T, Ben-Zvi A, Ho KH et al (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474. doi:10.1126/science.1124514
CAS
PubMed
Article
Google Scholar
Bence NF (2001) Impairment of the Ubiquitin-Proteasome System by Protein Aggregation. Science 292:1552–1555. doi:10.1126/science.292.5521.1552
CAS
PubMed
Article
Google Scholar
Walther DM, Kasturi P, Zheng M et al (2015) Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell 161:919–932. doi:10.1016/j.cell.2015.03.032
CAS
PubMed
Article
Google Scholar
Reis-Rodrigues P, Czerwieniec G, Peters TW et al (2012) Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11:120–127. doi:10.1111/j.1474-9726.2011.00765.x
PubMed Central
CAS
PubMed
Article
Google Scholar
David DC, Ollikainen N, Trinidad JC et al (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8:e1000450. doi:10.1371/journal.pbio.1000450
PubMed Central
PubMed
Article
CAS
Google Scholar
Bigio EH, Wu JY, Deng H-X et al (2013) Inclusions in frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), but not FTLD with FUS proteinopathy (FTLD-FUS), have properties of amyloid. Acta Neuropathol 125:463–465. doi:10.1007/s00401-013-1089-6
PubMed Central
PubMed
Article
Google Scholar
Lashley T, Rohrer JD, Bandopadhyay R et al (2011) A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain 134:2548–2564. doi:10.1093/brain/awr160
PubMed Central
PubMed
Article
Google Scholar
Shelkovnikova TA (2013) Modelling FUSopathies: focus on protein aggregation. Biochem Soc Trans 41:1613–1617. doi:10.1042/BST20130212
CAS
PubMed
Article
Google Scholar
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112. doi:10.1038/nrm2101
CAS
PubMed
Article
Google Scholar
Eichner T, Radford SE (2011) A Diversity of Assembly Mechanisms of a Generic Amyloid Fold. 43:8–18. doi:10.1016/j.molcel.2011.05.012
CAS
Google Scholar
Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901
CAS
PubMed
Article
Google Scholar
De Felice FG (2004) Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure. FASEB J. doi:10.1096/fj.03-1072fje
Google Scholar
Schmittschmitt JP, Scholtz JM (2003) The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci 12:2374–2378. doi:10.1110/ps.03152903
PubMed Central
CAS
PubMed
Article
Google Scholar
Fändrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166. doi:10.1038/35065514
PubMed
Article
Google Scholar
Ferrão-Gonzales AD, Souto SO, Silva JL, Foguel D (2000) The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state. Proc Natl Acad Sci 97:6445–6450
PubMed Central
PubMed
Article
Google Scholar
McParland VJ, Kad NM, Kalverda AP et al (2000) Partially Unfolded States of β 2-Microglobulin and Amyloid Formation in Vitro. Biochemistry 39:8735–8746. doi:10.1021/bi000276j
CAS
PubMed
Article
Google Scholar
Chiti F, Webster P, Taddei N et al (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci 96:3590–3594
PubMed Central
CAS
PubMed
Article
Google Scholar
Guijarro JI, Sunde M, Jones JA et al (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci 95:4224–4228
PubMed Central
CAS
PubMed
Article
Google Scholar
Litvinovich SV, Brew SA, Aota S et al (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 280:245–258. doi:10.1006/jmbi.1998.1863
CAS
PubMed
Article
Google Scholar
Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242. doi:10.1038/nmeth.1432
CAS
PubMed
Article
Google Scholar
Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306. doi:10.1038/nbt1012
CAS
PubMed
Article
Google Scholar
Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539. doi:10.1038/416535a
CAS
PubMed
Article
Google Scholar
Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 95:6448–6453
PubMed Central
CAS
PubMed
Article
Google Scholar
Kuo YM, Emmerling MR, Vigo-Pelfrey C et al (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081
CAS
PubMed
Article
Google Scholar
Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952. doi:10.1074/jbc.274.36.25945
CAS
PubMed
Article
Google Scholar
Walsh DM, Lomakin A, Benedek GB et al (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372
CAS
PubMed
Article
Google Scholar
Miller J, Arrasate M, Brooks E et al (2011) Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol 7:925–934. doi:10.1038/nchembio.694
PubMed Central
CAS
PubMed
Article
Google Scholar
Bolognesi B, Kumita JR, Barros TP et al (2010) ANS Binding Reveals Common Features of Cytotoxic Amyloid Species. 5:735–740. doi:10.1021/cb1001203
CAS
Google Scholar
Arrasate M, Mitra S, Schweitzer ES et al (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810. doi:10.1038/nature02998
CAS
PubMed
Article
Google Scholar
Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489. doi:10.1126/science.1079469
CAS
PubMed
Article
Google Scholar
De Genst E, Messer A, Dobson CM (2014) Antibodies and protein misfolding: from structural research tools to therapeutic strategies. BBA - Proteins and Proteomics 1844:1907–1919. doi:10.1016/j.bbapap.2014.08.016
PubMed
Article
CAS
Google Scholar
Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. doi:10.1038/nn.3028
CAS
PubMed
Article
Google Scholar
Lashuel HA, Lansbury PT (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201. doi:10.1017/S0033583506004422
CAS
PubMed
Article
Google Scholar
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. doi:10.1101/cshperspect.a006189
PubMed Central
PubMed
Article
CAS
Google Scholar
van Ham TJ, Breitling R, Swertz MA, Nollen EAA (2009) Neurodegenerative diseases: lessons from genome-wide screens in small model organisms. EMBO Mol Med 1:360–370. doi:10.1002/emmm.200900051
PubMed Central
PubMed
Article
CAS
Google Scholar
Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3:325–338. doi:10.1002/biot.200700217
CAS
PubMed
Article
Google Scholar
Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. doi:10.1038/42166
CAS
PubMed
Article
Google Scholar
Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 6:73. doi:10.1186/s13195-014-0073-2
PubMed Central
PubMed
Article
CAS
Google Scholar
Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775. doi:10.1126/science.1090439
PubMed Central
CAS
PubMed
Article
Google Scholar
Winderickx J, Delay C, De Vos A et al (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395. doi:10.1016/j.bbamcr.2008.01.020
CAS
PubMed
Article
Google Scholar
Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462
PubMed Central
CAS
PubMed
Article
Google Scholar
Gitler AD, Chesi A, Geddie ML et al (2009) Alpha-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41:308–315. doi:10.1038/ng.300
PubMed Central
CAS
PubMed
Article
Google Scholar
Chesi A, Kilaru A, Fang X et al (2012) The role of the Parkinson’s disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast. PLoS One 7:e34178. doi:10.1371/journal.pone.0034178
PubMed Central
CAS
PubMed
Article
Google Scholar
Kuwahara T, Koyama A, Koyama S et al (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 17:2997–3009. doi:10.1093/hmg/ddn198
CAS
PubMed
Article
Google Scholar
van Ham TJ, Thijssen KL, Breitling R et al (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027. doi:10.1371/journal.pgen.1000027
PubMed Central
PubMed
Article
CAS
Google Scholar
Hamamichi S, Rivas RN, Knight AL et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci USA 105:728–733. doi:10.1073/pnas.0711018105
PubMed Central
CAS
PubMed
Article
Google Scholar
van der Goot AT, Zhu W, Vazquez-Manrique RP et al (2012) Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc Natl Acad Sci USA 109:14912–14917. doi:10.1073/pnas.1203083109
PubMed Central
PubMed
Article
Google Scholar
Komatsu M, Wang QJ, Holstein GR et al (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci 104:14489–14494. doi:10.1073/pnas.0701311104
PubMed Central
CAS
PubMed
Article
Google Scholar
Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377:1019–1031. doi:10.1016/S0140-6736(10)61349-9
PubMed
Article
Google Scholar
Takashima A (2009) Amyloid-beta, tau, and dementia. J Alzheimers Dis 17:729–736. doi:10.3233/JAD-2009-1090
CAS
PubMed
Google Scholar
Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer’s disease. Lancet Neurol 12:92–104. doi:10.1016/S1474-4422(12)70259-4
CAS
PubMed
Article
Google Scholar
Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106:2700–2705. doi:10.1073/pnas.0809594106
PubMed Central
CAS
PubMed
Article
Google Scholar
Suh Y, Atzmon G, Cho M-O et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci 105:3438–3442. doi:10.1073/pnas.0705467105
PubMed Central
CAS
PubMed
Article
Google Scholar
Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992. doi:10.1073/pnas.0801030105
PubMed Central
CAS
PubMed
Article
Google Scholar
Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574. doi:10.1126/science.1078223
PubMed
Article
CAS
Google Scholar
Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi:10.1038/nature01298
CAS
PubMed
Article
Google Scholar
Tatar M (2001) A mutant drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110. doi:10.1126/science.1057987
CAS
PubMed
Article
Google Scholar
Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464. doi:10.1038/366461a0
CAS
PubMed
Article
Google Scholar
Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci 92:9368–9372
PubMed Central
CAS
PubMed
Article
Google Scholar
Cohen E, Bieschke J, Perciavalle RM et al (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610. doi:10.1126/science.1124646
CAS
PubMed
Article
Google Scholar
Hsu A-L, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145. doi:10.1126/science.1083701
CAS
PubMed
Article
Google Scholar
Cohen E, Paulsson JF, Blinder P et al (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169. doi:10.1016/j.cell.2009.11.014
PubMed Central
CAS
PubMed
Article
Google Scholar
Treusch S, Hamamichi S, Goodman JL et al (2011) Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334:1241–1245. doi:10.1126/science.1213210
PubMed Central
CAS
PubMed
Article
Google Scholar
Shulman JM, Chipendo P, Chibnik LB et al (2011) Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet 88:232–238. doi:10.1016/j.ajhg.2011.01.006
PubMed Central
CAS
PubMed
Article
Google Scholar
Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci 99:10417–10422. doi:10.1073/pnas.152161099
PubMed Central
PubMed
Article
CAS
Google Scholar
Silva MC, Fox S, Beam M et al (2011) A genetic screening strategy identifies novel regulators of the proteostasis network. PLoS Genet 7:e1002438. doi:10.1371/journal.pgen.1002438
PubMed Central
CAS
PubMed
Article
Google Scholar
Nollen EAA, Garcia SM, van Haaften G et al (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci 101:6403–6408. doi:10.1073/pnas.0307697101
PubMed Central
CAS
PubMed
Article
Google Scholar
van Ham TJ, Holmberg MA, van der Goot AT et al (2010) Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 142:601–612. doi:10.1016/j.cell.2010.07.020
PubMed
Article
CAS
Google Scholar
Falsone SF, Meyer NH, Schrank E et al (2012) SERF protein is a direct modifier of amyloid fiber assembly. Cell Rep 2:358–371. doi:10.1016/j.celrep.2012.06.012
PubMed Central
CAS
PubMed
Article
Google Scholar
Lejeune F-X, Mesrob L, Parmentier F et al (2012) Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genom 13:91. doi:10.1186/1471-2164-13-91
CAS
Article
Google Scholar
Behrends C, Langer CA, Boteva R et al (2006) Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell 23:887–897. doi:10.1016/j.molcel.2006.08.017
CAS
PubMed
Article
Google Scholar
Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8:1155–1162. doi:10.1038/ncb1477
PubMed Central
CAS
PubMed
Article
Google Scholar
Giorgini F, Guidetti P, Nguyen Q et al (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531. doi:10.1038/ng1542
PubMed Central
CAS
PubMed
Article
Google Scholar
Campesan S, Green EW, Breda C et al (2011) The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol 21:961–966. doi:10.1016/j.cub.2011.04.028
PubMed Central
CAS
PubMed
Article
Google Scholar
Zwilling D, Huang S-Y, Sathyasaikumar KV et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874. doi:10.1016/j.cell.2011.05.020
PubMed Central
CAS
PubMed
Article
Google Scholar
Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. doi:10.1038/35057062
CAS
PubMed
Article
Google Scholar
Clamp M, Fry B, Kamal M et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 104:19428–19433. doi:10.1073/pnas.0709013104
PubMed Central
CAS
PubMed
Article
Google Scholar
Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. doi:10.1038/nature01262
Article
CAS
Google Scholar
ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247
Article
CAS
Google Scholar
Kapranov P, Cheng J, Dike S et al (2007) RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science 316:1484–1488. doi:10.1126/science.1138341
CAS
PubMed
Article
Google Scholar
Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. doi:10.1126/science.1112014
CAS
PubMed
Article
Google Scholar
Cech TR, Steitz JA (2014) The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell 157:77–94. doi:10.1016/j.cell.2014.03.008
CAS
PubMed
Article
Google Scholar
Kapranov P, Laurent GS, Raz T et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is “dark matter” un-annotated RNA. BMC Biol 8:149. doi:10.1186/1741-7007-8-149
PubMed Central
CAS
PubMed
Article
Google Scholar
Donnelly CJ, Zhang P-W, Pham JT et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428. doi:10.1016/j.neuron.2013.10.015
PubMed Central
CAS
PubMed
Article
Google Scholar
Miller JW, Urbinati CR, Teng-Umnuay P et al (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19:4439–4448. doi:10.1093/emboj/19.17.4439
PubMed Central
CAS
PubMed
Article
Google Scholar
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. doi:10.1038/nrg2843
CAS
PubMed
Google Scholar
Bak M, Silahtaroglu A, Moller M et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444. doi:10.1261/rna.783108
PubMed Central
CAS
PubMed
Article
Google Scholar
Mercer TR, Dinger ME, Sunkin SM et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721. doi:10.1073/pnas.0706729105
PubMed Central
CAS
PubMed
Article
Google Scholar
Kapsimali M, Kloosterman WP, de Bruijn E et al (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173. doi:10.1186/gb-2007-8-8-r173
PubMed Central
PubMed
Article
CAS
Google Scholar
Visvanathan J, Lee S, Lee B et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749. doi:10.1101/gad.1519107
PubMed Central
CAS
PubMed
Article
Google Scholar
Smirnova L, Gräfe A, Seiler A et al (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477. doi:10.1111/j.1460-9568.2005.03978.x
PubMed
Article
Google Scholar
Miska EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68–R69. doi:10.1186/gb-2004-5-9-r68
PubMed Central
PubMed
Article
Google Scholar
Sempere LF, Freemantle S, Pitha-Rowe I et al (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13–R14. doi:10.1186/gb-2004-5-3-r13
PubMed Central
PubMed
Article
Google Scholar
Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281. doi:10.1261/rna.5980303
PubMed Central
CAS
PubMed
Article
Google Scholar
Rege SD, Geetha T, Pondugula SR et al (2013) Noncoding RNAs in Neurodegenerative Diseases. International Scholarly Research Notices 2013:1–5. doi:10.1155/2013/375852
Google Scholar
Johnson R, Noble W, Tartaglia GG, Buckley NJ (2012) Neurodegeneration as an RNA disorder. Prog Neurobiol 99:293–315. doi:10.1016/j.pneurobio.2012.09.006
CAS
PubMed
Article
Google Scholar
Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11:189–200. doi:10.1016/S1474-4422(11)70286-1
CAS
PubMed
Article
Google Scholar
Smith P, Hashimi Al A, Girard J et al (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116:240–247. doi:10.1111/j.1471-4159.2010.07097.x
CAS
PubMed
Article
Google Scholar
Wang X, Liu P, Zhu H et al (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80:268–273. doi:10.1016/j.brainresbull.2009.08.006
CAS
PubMed
Article
Google Scholar
Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420. doi:10.1073/pnas.0710263105
PubMed Central
PubMed
Article
Google Scholar
Wang W-X, Rajeev BW, Stromberg AJ et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008
PubMed Central
PubMed
Article
CAS
Google Scholar
Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300. doi:10.1097/WNR.0b013e3280148e8b
CAS
PubMed
Article
Google Scholar
Miñones-Moyano E, Porta S, Escaramís G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078. doi:10.1093/hmg/ddr210
PubMed
Article
CAS
Google Scholar
Kabaria S, Choi DC, Chaudhuri AD et al (2015) Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 589:319–325. doi:10.1016/j.febslet.2014.12.014
CAS
PubMed
Article
Google Scholar
Lee S-T, Chu K, Im W-S et al (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179. doi:10.1016/j.expneurol.2010.10.012
CAS
PubMed
Article
Google Scholar
Marti E, Pantano L, Banez-Coronel M et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235. doi:10.1093/nar/gkq575
PubMed Central
CAS
PubMed
Article
Google Scholar
Johnson R, Zuccato C, Belyaev ND et al (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiology of Disease 29:438–445. doi:10.1016/j.nbd.2007.11.001
CAS
PubMed
Article
Google Scholar
Lee Y, Samaco RC, Gatchel JR et al (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11:1137–1139. doi:10.1038/nn.2183
PubMed Central
CAS
PubMed
Article
Google Scholar
Packer AN, Xing Y, Harper SQ et al (2008) The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington’s Disease. J Neurosci 28:14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008
PubMed Central
CAS
PubMed
Article
Google Scholar
Novoa EM, Ribas de Pouplana L (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581. doi:10.1016/j.tig.2012.07.006
CAS
PubMed
Article
Google Scholar
Goodenbour JM, Pan T (2006) Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 34:6137–6146. doi:10.1093/nar/gkl725
PubMed Central
CAS
PubMed
Article
Google Scholar
Ishimura R, Nagy G, Dotu I et al (2014) RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345:455–459. doi:10.1126/science.1249749
PubMed Central
CAS
PubMed
Article
Google Scholar
Kasher PR, Namavar Y, van Tijn P et al (2011) Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia. Hum Mol Genet 20:1574–1584. doi:10.1093/hmg/ddr034
CAS
PubMed
Article
Google Scholar
Namavar Y, Barth PG, Kasher PR et al (2011) Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134:143–156. doi:10.1093/brain/awq287
PubMed
Article
Google Scholar
Budde BS, Namavar Y, Barth PG et al (2008) tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet 40:1113–1118. doi:10.1038/ng.204
CAS
PubMed
Article
Google Scholar
Edvardson S, Shaag A, Kolesnikova O et al (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862. doi:10.1086/521227
PubMed Central
CAS
PubMed
Article
Google Scholar
Borthwick GM, Taylor RW, Walls TJ et al (2006) Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann Neurol 59:570–574. doi:10.1002/ana.20758
CAS
PubMed
Article
Google Scholar
Rudnik-Schöneborn S, Barth PG, Zerres K (2014) Pontocerebellar hypoplasia. Am J Med Genet C Semin Med Genet 166C:173–183. doi:10.1002/ajmg.c.31403
PubMed
Article
CAS
Google Scholar
Trotta CR, Paushkin SV, Patel M et al (2006) Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site. Nature 441:375–377. doi:10.1038/nature04741
CAS
PubMed
Article
Google Scholar
Hanada T, Weitzer S, Mair B et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature. doi:10.1038/nature11923
PubMed Central
PubMed
Google Scholar
Karaca E, Weitzer S, Pehlivan D et al (2014) Human CLP1 mutations Alter tRNA biogenesis, affecting Both peripheral and central nervous system function. Cell 157:636–650. doi:10.1016/j.cell.2014.02.058
PubMed Central
CAS
PubMed
Article
Google Scholar
Schaffer AE, Eggens VRC, Caglayan AO et al (2014) CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell 157:651–663. doi:10.1016/j.cell.2014.03.049
PubMed Central
CAS
PubMed
Article
Google Scholar
Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35. doi:10.1016/j.brainres.2010.03.110
CAS
PubMed
Article
Google Scholar
Faghihi MA, Zhang M, Huang J et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56. doi:10.1186/gb-2010-11-5-r56
PubMed Central
PubMed
Article
CAS
Google Scholar
Tan JY, Vance KW, Varela MA et al (2014) Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 21:955–961. doi:10.1038/nsmb.2902
PubMed Central
CAS
PubMed
Article
Google Scholar
Francelle L, Galvan L, Gaillard M-C et al (2015) The striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging 36(1601):e7–e16. doi:10.1016/j.neurobiolaging.2014.11.014
PubMed
Google Scholar
Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Genet 22:387–419. doi:10.1146/annurev.ge.22.120188.002131
CAS
PubMed
Article
Google Scholar
Maniatis T, Reed R (1987) The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature 325:673–678. doi:10.1038/325673a0
CAS
PubMed
Article
Google Scholar
Zhang Z, Lotti F, Dittmar K et al (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133:585–600. doi:10.1016/j.cell.2008.03.031
PubMed Central
CAS
PubMed
Article
Google Scholar
Jia Y, Mu JC, Ackerman SL (2012) Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell 148:296–308. doi:10.1016/j.cell.2011.11.057
PubMed Central
CAS
PubMed
Article
Google Scholar