Skip to main content

Protein Homeostasis and Ageing in C. elegans

  • Chapter
  • First Online:
Ageing: Lessons from C. elegans

Part of the book series: Healthy Ageing and Longevity ((HAL))

  • 1877 Accesses

Abstract

Understanding the molecular mechanism underlying ageing and age-related diseases is the best strategy to design therapies and interventions to effectively decrease ageing and age-related morbidity and mortality. A decline in proteome quality results in the accumulation of misfolded proteins that tend to aggregate in soluble or insoluble entities and has a negative impact on cell physiology. Protein aggregation has been considered a common hallmark of several neurodegenerative diseases and is also associated with normal ageing. Although it is still not clear how and why protein aggregation occurs, it seems that altered protein synthesis, folding, repair and degradation, commonly referred as protein homeostasis, play a central role in this process. As a consequence, modified proteins tend to form insoluble high molecular weight aggregates that actively influence cell metabolism, proteasomal activity and protein turnover. In some cases, protein aggregation may be beneficial by reducing proteotoxic effects of protein complexes. However, whether protein aggregates play a causal role in ageing phenotypes and lifespan remains to be determined, and this is one of the key goals of biomedical ageing research. C. elegans is proving to be a very useful model for studying the aggregation of human disease proteins. Although the significance of human protein aggregation in C. elegans as a model for protein homeostasis and disease is debatable, several potentially important models of proteotoxicity have been developed. In this chapter, I will describe the importance of studying normal C. elegans protein aggregation, and the relevance of worm models of conformational diseases to ageing and age-related disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porta EA (2002) Pigments in aging: an overview. Ann N Y Acad Sci 959:57–65

    Article  CAS  PubMed  Google Scholar 

  2. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8(8):e1000450. doi:e1000450 [pii] 10.1371/journal.pbio.1000450

  3. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. doi:10.1038/nrn1007

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee A, Morales-Scheihing D, Butler PC, Soto C (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol Med 21(7):439–449. doi:10.1016/j.molmed.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107(32):14508–14513. doi:10.1073/pnas.1006551107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wetzel R (1994) Mutations and off-pathway aggregation of proteins. Trends Biotechnol 12(5):193–198

    Article  CAS  PubMed  Google Scholar 

  7. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–23

    Article  CAS  PubMed  Google Scholar 

  8. Haase-Pettingell CA, King J (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem 263(10):4977–4983

    CAS  PubMed  Google Scholar 

  9. Jaenicke R (1995) Folding and association versus misfolding and aggregation of proteins. Philos Trans R Soc Lond 348(1323):97–105

    Article  CAS  Google Scholar 

  10. Wojcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35(5):579–589

    Article  CAS  PubMed  Google Scholar 

  11. Heydari AR, Takahashi R, Gutsmann A, You S, Richardson A (1994) Hsp70 and aging. Experientia 50(11–12):1092–1098

    Article  CAS  PubMed  Google Scholar 

  12. Singh R, Kolvraa S, Bross P, Jensen UB, Gregersen N, Tan Q, Knudsen C, Rattan SI (2006) Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes. Cell Stress Chaperones 11(3):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu AY, Lin Z, Choi HS, Sorhage F, Li B (1989) Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 264(20):12037–12045

    CAS  PubMed  Google Scholar 

  14. Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30–30

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of C. elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516(1–3):53–57

    Article  CAS  PubMed  Google Scholar 

  16. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2(2):131–139

    Article  CAS  PubMed  Google Scholar 

  17. Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18(3):598–599

    CAS  PubMed  Google Scholar 

  18. Wang HD, Kazemi-Esfarjani P, Benzer S (2004) Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A 101(34):12610–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145

    Article  CAS  PubMed  Google Scholar 

  20. Morley JF, Morimoto RI (2004) Regulation of longevity in C. elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15(2):657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vos MJ, Carra S, Kanon B, Bosveld F, Klauke K, Sibon OC, Kampinga HH (2016) Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 15(2):217–226. doi:10.1111/acel.12422

    Article  CAS  PubMed  Google Scholar 

  22. Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD (2008) The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun 376(4):637–641. doi:10.1016/j.bbrc.2008.08.161

    Article  CAS  PubMed  Google Scholar 

  23. Elefant F, Palter KB (1999) Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 10(7):2101–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nylandsted J, Brand K, Jaattela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–125

    Article  CAS  PubMed  Google Scholar 

  25. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772. doi:10.1038/nrc1716

    Article  CAS  PubMed  Google Scholar 

  26. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  27. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  28. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama H, Nishida K, Otsu K (2016) Macromolecular degradation systems and cardiovascular aging. Circ Res 118(10):1577–1592. doi:10.1161/CIRCRESAHA.115.307495

    Article  CAS  PubMed  Google Scholar 

  30. Campello L, Esteve-Rudd J, Cuenca N, Martin-Nieto J (2013) The ubiquitin-proteasome system in retinal health and disease. Mol Neurobiol 47(2):790–810. doi:10.1007/s12035-012-8391-5

    Article  CAS  PubMed  Google Scholar 

  31. Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA (2016) It is all about (U)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in alzheimer disease. Oxid Med Cell Longev 2016:2756068. doi:10.1155/2016/2756068

    Article  PubMed  PubMed Central  Google Scholar 

  32. Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1(2):279–293

    Article  CAS  PubMed  Google Scholar 

  33. Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35(6–7):721–728

    Article  CAS  PubMed  Google Scholar 

  34. Jenner P (2001) Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24(5):245–247

    Article  CAS  PubMed  Google Scholar 

  35. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439

    Article  CAS  PubMed  Google Scholar 

  36. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287(5462):2486–2492

    Article  CAS  PubMed  Google Scholar 

  37. Soti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38(10):1037–1040

    Article  CAS  PubMed  Google Scholar 

  38. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: The importance of exquisite quality control. Ageing research reviews 10(2):205–215. doi:S1568-1637(10)00005-X [pii] 10.1016/j.arr.2010.02.001

  39. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi:10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24(12):604–612. doi:10.1016/j.tig.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergamini E, Del Roso A, Gori Z, Masiello P, Masini M, Pollera M (1994) Endocrine and amino acid regulation of liver macroautophagy and proteolytic function. Am J Physiol 266(1 Pt 1):G118–122

    CAS  PubMed  Google Scholar 

  42. Cavallini G, Donati A, Gori Z, Pollera M, Bergamini E (2001) The protection of rat liver autophagic proteolysis from the age-related decline co-varies with the duration of anti-ageing food restriction. Exp Gerontol 36(3):497–506

    Article  CAS  PubMed  Google Scholar 

  43. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275(40):31505–31513. doi:10.1074/jbc.M002102200

    Article  CAS  PubMed  Google Scholar 

  44. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395. doi:nature08221 [pii] 10.1038/nature08221

  45. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92(16):7540–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walker GA, White TM, McColl G, Jenkins NL, Babich S, Candido EP, Johnson TE, Lithgow GJ (2001) Heat shock protein accumulation is upregulated in a long-lived mutant of C. elegans. J Gerontol A Biol Sci Med Sci 56(7):B281–287

    Article  CAS  PubMed  Google Scholar 

  47. Labbadia J, Morimoto RI (2015) Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell 59(4):639–650. doi:10.1016/j.molcel.2015.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alavez S, Lithgow GJ (2012) Pharmacological maintenance of protein homeostasis could postpone age-related disease. Aging Cell 11(2):187–191. doi:10.1111/j.1474-9726.2012.00789.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  50. Ferrell K, Wilkinson CR, Dubiel W, Gordon C (2000) Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25(2):83–88

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi M, Iwasaki H, Inoue H, Takahashi K (2002) Reverse genetic analysis of the C. elegans 26S proteasome subunits by RNA interference. Biol Chem 383(7–8):1263–1266

    CAS  PubMed  Google Scholar 

  52. Ghazi A, Henis-Korenblit S, Kenyon C (2007) Regulation of C. elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 104(14):5947–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489(7415):263–268. doi:10.1038/nature11315

    Article  CAS  PubMed  Google Scholar 

  54. Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL (2016) Graded proteasome dysfunction in C. elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway. PLoS Genet 12(2):e1005823. doi:10.1371/journal.pgen.1005823

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hamer G, Matilainen O, Holmberg CI (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7(6):473–478. doi:10.1038/nmeth.1460

    Article  CAS  PubMed  Google Scholar 

  56. Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU (2015) Widespread proteome remodeling and aggregation in aging C. Elegans. Cell 161(4):919–932. doi:10.1016/j.cell.2015.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Terman A (2006) Catabolic insufficiency and aging. Ann N Y Acad Sci 1067:27–36

    Article  CAS  PubMed  Google Scholar 

  58. Rattan SI, Clark BF (1996) Intracellular protein synthesis, modifications and aging. Biochem Soc Trans 24(4):1043–1049

    Article  CAS  PubMed  Google Scholar 

  59. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390–1393

    Article  CAS  PubMed  Google Scholar 

  60. Reis-Rodrigues P, Czerwieniec G, Peters TW, Evani US, Alavez S, Gaman EA, Vantipalli M, Mooney SD, Gibson BW, Lithgow GJ, Hughes RE (2012) Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11(1):120–127. doi:10.1111/j.1474-9726.2011.00765.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Austad SN (2009) Is there a role for new invertebrate models for aging research? J Gerontol A Biol Sci Med Sci 64(2):192–194. doi:10.1093/gerona/gln059

    Article  PubMed  Google Scholar 

  62. Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    Article  CAS  PubMed  Google Scholar 

  63. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222. doi:10.1016/j.cell.2012.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Link CD (1995) Expression of human beta-amyloid peptide in transgenic C. elegans. Proc Natl Acad Sci U S A 92(20):9368–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fonte V, Kapulkin WJ, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A 99(14):9439–9444. doi:10.1073/pnas.152313999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Y, Cao Z, Klein WL, Luo Y (2010) Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 31(6):1055–1058. doi:10.1016/j.neurobiolaging.2008.07.013

    Article  CAS  PubMed  Google Scholar 

  67. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610

    Article  CAS  PubMed  Google Scholar 

  68. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in C. elegans. Aging Cell 7(3):394–404. doi:ACE385 [pii] 10.1111/j.1474-9726.2008.00385.x

  69. Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q, Wood DE, Sahagan BG (2003) Gene expression analysis in a transgenic C. elegans Alzheimer’s disease model. Neurobiol Aging 24(3):397–413, S0197458002002245 [pii]

    Article  CAS  PubMed  Google Scholar 

  70. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic C. elegans. J Neurosci 26(50):13102–13113. doi:26/50/13102 [pii] 10.1523/JNEUROSCI.3448-06.2006

  71. Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ (2011) Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472(7342):226–229. doi:nature09873 [pii] 10.1038/nature09873

  72. Srivastava D, Arya U, SoundaraRajan T, Dwivedi H, Kumar S, Subramaniam JR (2008) Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9(5):309–316. doi:10.1007/s10522-008-9139-5

    Article  CAS  PubMed  Google Scholar 

  73. Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A, Doglia SM, De Luigi A, Salmona M (2010) Tetracycline and its analogues protect C. elegans from beta amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40(2):424–431. doi:S0969-9961(10)00226-3 [pii]

    Google Scholar 

  74. Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a C. elegans model of beta-amyloid peptide toxicity. Genetics 186(3):857–866. doi:genetics.110.120436 [pii] 10.1534/genetics.110.120436

  75. Angeli S, Klang I, Sivapatham R, Mark K, Zucker D, Bhaumik D, Lithgow GJ, Andersen JK (2013) A DNA synthesis inhibitor is protective against proteotoxic stressors via modulation of fertility pathways in C. elegans. Aging 5(10):759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sangha JS, Sun X, Wally OS, Zhang K, Ji X, Wang Z, Wang Y, Zidichouski J, Prithiviraj B, Zhang J (2012) Liuwei Dihuang (LWDH), a traditional Chinese medicinal formula, protects against beta-amyloid toxicity in transgenic C. elegans. PLoS One 7(8):e43990. doi:10.1371/journal.pone.0043990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rebolledo DL, Aldunate R, Kohn R, Neira I, Minniti AN, Inestrosa NC (2011) Copper reduces Abeta oligomeric species and ameliorates neuromuscular synaptic defects in a C. elegans model of inclusion body myositis. J Neurosci 31(28):10149–10158. doi:10.1523/JNEUROSCI.0336-11.2011

    Article  CAS  PubMed  Google Scholar 

  78. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a C. elegans model of tauopathy. Proc Natl Acad Sci U S A 100(17):9980–9985. doi:10.1073/pnas.1533448100 1533448100[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in C. elegans. Hum Mol Genet 15(9):1483–1496. doi:10.1093/hmg/ddl067

    Article  CAS  PubMed  Google Scholar 

  80. Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R (2012) Inhibition of tau aggregation in a novel C. elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 21(16):3587–3603. doi:10.1093/hmg/dds190

    Article  CAS  PubMed  Google Scholar 

  81. McCormick AV, Wheeler JM, Guthrie CR, Liachko NF, Kraemer BC (2013) Dopamine D2 receptor antagonism suppresses tau aggregation and neurotoxicity. Biol Psychiatry 73(5):464–471. doi:10.1016/j.biopsych.2012.08.027

    Article  CAS  PubMed  Google Scholar 

  82. Faber PW, Alter JR, MacDonald ME, Hart AC (1999) Polyglutamine-mediated dysfunction and apoptotic death of a C. elegans sensory neuron. Proc Natl Acad Sci U S A 96(1):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C (2001) Expanded polyglutamines in C. elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci U S A 98(23):13318–13323. doi:10.1073/pnas.231476398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parker AJ, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Neri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Med Sci (Paris) 21(5):556–557. doi:10.1051/medsci/2005215556

    Article  Google Scholar 

  85. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in C. elegans. Proc Natl Acad Sci U S A 97(11):5750–5755. doi:10.1073/pnas.100107297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in C. elegans. Proc Natl Acad Sci U S A 99(16):10417–10422

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311(5766):1471–1474

    Article  CAS  PubMed  Google Scholar 

  88. Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18(4):737–752. doi:10.1093/hmg/ddn404

    Article  CAS  PubMed  Google Scholar 

  89. Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington’s disease by ubiquilin. Hum Mol Genet 15(6):1025–1041. doi:10.1093/hmg/ddl017

    Article  CAS  PubMed  Google Scholar 

  90. Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode C. elegans. Aging cell 9 (4):558-569. doi:ACE582 [pii] 10.1111/j.1474-9726.2010.00582.x

  91. Ching TT, Chiang WC, Chen CS, Hsu AL (2011) Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell 10(3):506–519. doi:10.1111/j.1474-9726.2011.00688.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and motor deficits in C. elegans overexpressing human alpha-synuclein. J Neurochem 86(1):165–172, doi:1809 [pii]

    Article  CAS  PubMed  Google Scholar 

  93. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T (2006) Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic C. elegans. J Biol Chem 281(1):334–340. doi:10.1074/jbc.M504860200

    Article  CAS  PubMed  Google Scholar 

  94. Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of C. elegans. J Neurosci 25(15):3801–3812. doi:25/15/3801 [pii] 10.1523/JNEUROSCI.5157-04.2005

  95. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313(5785):324–328. doi:10.1126/science.1129462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vartiainen S, Pehkonen P, Lakso M, Nass R, Wong G (2006) Identification of gene expression changes in transgenic C. elegans overexpressing human alpha-synuclein. Neurobiol Dis 22(3):477–486. doi:10.1016/j.nbd.2005.12.021

    Article  CAS  PubMed  Google Scholar 

  97. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A 105(2):728–733. doi:0711018105 [pii] 10.1073/pnas.0711018105

  98. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3):e1000027. doi:10.1371/journal.pgen.1000027

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Regina Brunauer for helpful reading and discussion. SA was supported by PROMEP UAM-PTC483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestre Alavez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alavez, S. (2017). Protein Homeostasis and Ageing in C. elegans . In: Olsen, A., Gill, M. (eds) Ageing: Lessons from C. elegans. Healthy Ageing and Longevity. Springer, Cham. https://doi.org/10.1007/978-3-319-44703-2_12

Download citation

Publish with us

Policies and ethics