Skip to main content

Advertisement

Log in

Protein folding and aggregation in bacteria

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and β-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    Article  PubMed  CAS  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  3. Puchtler H, Sweat F (1966) A review of early concepts of amyloid in context with contemporary chemical literature from 1839 to 1859. J Histochem Cytochem 14:123–134

    PubMed  CAS  Google Scholar 

  4. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  PubMed  CAS  Google Scholar 

  5. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2007) A primer of amyloid nomenclature. Amyloid 14:179–183

    Article  PubMed  CAS  Google Scholar 

  6. Makin OS, Serpell LC (2005) X-ray diffraction studies of amyloid structure. Methods Mol Biol 299:67–80

    PubMed  CAS  Google Scholar 

  7. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2005) Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12:1–4

    Article  PubMed  CAS  Google Scholar 

  8. Buxbaum JN (2003) Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases? Trends Biochem Sci 28:585–592

    Article  PubMed  CAS  Google Scholar 

  9. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    Article  PubMed  CAS  Google Scholar 

  10. Ramakrishnan V (2008) What we have learned from ribosome structures. Biochem Soc Trans 36:567–574

    Article  PubMed  CAS  Google Scholar 

  11. Pfanner N (1999) Who chaperones nascent chains in bacteria? Curr Biol 9:R720–R724

    Article  PubMed  CAS  Google Scholar 

  12. Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, Ventura S (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783:1815–1825

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6:e195

    Article  PubMed  CAS  Google Scholar 

  14. Tartaglia GG, Vendruscolo M (2009) Correlation between mRNA expression levels and protein aggregation propensities in subcellular localizations. Mol Biosyst 5:1873–1876

    Article  PubMed  CAS  Google Scholar 

  15. Cech TR (2000) Structural biology. The ribosome is a ribozyme. Science 289:878–879

    Article  PubMed  CAS  Google Scholar 

  16. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

  17. Voisset C, Thuret JY, Tribouillard-Tanvier D, Saupe SJ, Blondel M (2008) Tools for the study of ribosome-borne protein folding activity. Biotechnol J 3:1033–1040

    Article  PubMed  CAS  Google Scholar 

  18. Simonetti A, Marzi S, Jenner L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M (2009) A structural view of translation initiation in bacteria. Cell Mol Life Sci 66:423–436

    Article  PubMed  CAS  Google Scholar 

  19. Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, Klaholz BP (2008) Structure of the 30S translation initiation complex. Nature 455:416–420

    Article  PubMed  CAS  Google Scholar 

  20. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  PubMed  CAS  Google Scholar 

  21. Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106:233–241

    Article  PubMed  CAS  Google Scholar 

  22. Ban N, Nissen P, Hansen J, Capel M, Moore PB, Steitz TA (1999) Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400:841–847

    Article  PubMed  CAS  Google Scholar 

  23. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  24. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  25. Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105:3076–3081

    Article  PubMed  Google Scholar 

  26. Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB (2009) E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J Mol Biol 392:589–601

    Article  PubMed  CAS  Google Scholar 

  27. Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol 3:e45

    Article  PubMed  CAS  Google Scholar 

  28. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding and degrading proteins. Science 286:1888–1893

    Article  PubMed  CAS  Google Scholar 

  29. Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M (2009) A relationship between mRNA expression levels and protein solubility in E. coli. J Mol Biol 388:381–389

    Article  PubMed  CAS  Google Scholar 

  30. Das D, Das A, Samanta D, Ghosh J, Dasgupta S, Bhattacharya A, Basu A, Sanyal S, Das Gupta C (2008) Role of the ribosome in protein folding. Biotechnol J 3:999–1009

    Article  PubMed  CAS  Google Scholar 

  31. Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34:16–24

    Article  PubMed  CAS  Google Scholar 

  32. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  PubMed  CAS  Google Scholar 

  33. Crombie T, Swaffield JC, Brown AJ (1992) Protein folding within the cell is influenced by controlled rates of polypeptide elongation. J Mol Biol 228:7–12

    Article  PubMed  CAS  Google Scholar 

  34. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291

    Article  PubMed  CAS  Google Scholar 

  35. Irwin B, Heck JD, Hatfield GW (1995) Codon pair utilization biases influence translational elongation step times. J Biol Chem 270:22801–22806

    Article  PubMed  CAS  Google Scholar 

  36. Marin M (2008) Folding at the rhythm of the rare codon beat. Biotechnol J 3:1047–1057

    Article  PubMed  CAS  Google Scholar 

  37. Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280

    Article  PubMed  CAS  Google Scholar 

  38. Krasheninnikov IA, Komar AA, Adzhubei IA (1988) Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins. Dokl Akad Nauk SSSR 303:995–999

    PubMed  CAS  Google Scholar 

  39. Purvis IJ, Bettany AJ, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJ (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193:413–417

    Article  PubMed  CAS  Google Scholar 

  40. Zhang G, Ignatova Z (2009) Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS One 4:e5036

    Article  PubMed  CAS  Google Scholar 

  41. Barak Z, Lindsley D, Gallant J (1996) On the mechanism of leftward frameshifting at several hungry codons. J Mol Biol 256:676–684

    Article  PubMed  CAS  Google Scholar 

  42. Roche ED, Sauer RT (1999) SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J 18:4579–4589

    Article  PubMed  CAS  Google Scholar 

  43. Withey JH, Friedman DI (2003) A salvage pathway for protein structures: tmRNA and trans-translation. Annu Rev Microbiol 57:101–123

    Article  PubMed  CAS  Google Scholar 

  44. Angov E, Hillier CJ, Kincaid RL, Lyon JA (2008) Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One 3:e2189

    Article  PubMed  CAS  Google Scholar 

  45. Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE (2000) Ribosome-mediated folding of partially unfolded ricin A-chain. J Biol Chem 275:9263–9269

    Article  PubMed  CAS  Google Scholar 

  46. Chattopadhyay S, Pal S, Pal D, Sarkar D, Chandra S, Das Gupta C (1999) Protein folding in Escherichia coli: role of 23S ribosomal RNA. Biochim Biophys Acta 1429:293–298

    PubMed  CAS  Google Scholar 

  47. Das B, Chattopadhyay S, Das Gupta C (1992) Reactivation of denatured fungal glucose 6-phosphate dehydrogenase and E. coli alkaline phosphatase with E. coli ribosome. Biochem Biophys Res Commun 183:774–780

    Article  PubMed  CAS  Google Scholar 

  48. Bera AK, Das B, Chattopadhyay S, Dasgupta C (1994) Refolding of denatured restriction endonucleases with ribosomal preparations from Methanosarcina barkeri. Biochem Mol Biol Int 32:315–323

    PubMed  CAS  Google Scholar 

  49. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688

    Article  PubMed  CAS  Google Scholar 

  50. Lu J, Deutsch C (2005) Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44:8230–8243

    Article  PubMed  CAS  Google Scholar 

  51. Woolhead CA, McCormick PJ, Johnson AE (2004) Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–736

    Article  PubMed  CAS  Google Scholar 

  52. Jenni S, Ban N (2003) The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr Opin Struct Biol 13:212–219

    Article  PubMed  CAS  Google Scholar 

  53. Chattopadhyay S, Das B, Dasgupta C (1996) Reactivation of denatured proteins by 23S ribosomal RNA: role of domain V. Proc Natl Acad Sci USA 93:8284–8287

    Article  PubMed  CAS  Google Scholar 

  54. Samanta D, Mukhopadhyay D, Chowdhury S, Ghosh J, Pal S, Basu A, Bhattacharya A, Das A, Das D, DasGupta C (2008) Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA–protein interactions. J Bacteriol 190:3344–3352

    Article  PubMed  CAS  Google Scholar 

  55. Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE (2002) Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng 15:153–160

    Article  PubMed  CAS  Google Scholar 

  56. Smith HE (2007) The transcriptional response of Escherichia coli to recombinant protein insolubility. J Struct Funct Genomics 8:27–35

    Article  PubMed  CAS  Google Scholar 

  57. Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789

    Article  PubMed  CAS  Google Scholar 

  58. Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69:833–842

    Article  PubMed  CAS  Google Scholar 

  59. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–581

    Article  PubMed  CAS  Google Scholar 

  60. Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C (2004) In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 5:195–200

    Article  PubMed  CAS  Google Scholar 

  61. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  62. Lakshmipathy SK, Tomic S, Kaiser CM, Chang HC, Genevaux P, Georgopoulos C, Barral JM, Johnson AE, Hartl FU, Etchells SA (2007) Identification of nascent chain interaction sites on trigger factor. J Biol Chem 282:12186–12193

    Article  PubMed  CAS  Google Scholar 

  63. Maier R, Eckert B, Scholz C, Lilie H, Schmid FX (2003) Interaction of trigger factor with the ribosome. J Mol Biol 326:585–592

    Article  PubMed  CAS  Google Scholar 

  64. Maier R, Scholz C, Schmid FX (2001) Dynamic association of trigger factor with protein substrates. J Mol Biol 314:1181–1190

    Article  PubMed  CAS  Google Scholar 

  65. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  PubMed  CAS  Google Scholar 

  66. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  PubMed  CAS  Google Scholar 

  67. Thomas JG, Baneyx F (2000) ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol Microbiol 36:1360–1370

    Article  PubMed  CAS  Google Scholar 

  68. Schroder H, Langer T, Hartl FU, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144

    PubMed  CAS  Google Scholar 

  69. Szabo A, Langer T, Schroder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci USA 91:10345–10349

    Article  PubMed  CAS  Google Scholar 

  70. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci USA 106:8471–8476

    Article  PubMed  Google Scholar 

  71. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER (2009) Allostery in Hsp70 chaperones is transduced by subdomain rotations. J Mol Biol 388:475–490

    Article  PubMed  CAS  Google Scholar 

  72. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  73. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  74. Ueguchi C, Kakeda M, Yamada H, Mizuno T (1994) An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc Natl Acad Sci USA 91:1054–1058

    Article  PubMed  CAS  Google Scholar 

  75. Genevaux P, Wawrzynow A, Zylicz M, Georgopoulos C, Kelley WL (2001) DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA–DnaK interaction. J Biol Chem 276:7906–7912

    Article  PubMed  CAS  Google Scholar 

  76. Braig K, Adams PD, Brunger AT (1995) Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution. Nat Struct Biol 2:1083–1094

    Article  PubMed  CAS  Google Scholar 

  77. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  PubMed  CAS  Google Scholar 

  78. Bochkareva ES, Lissin NM, Flynn GC, Rothman JE, Girshovich AS (1992) Positive cooperativity in the functioning of molecular chaperone GroEL. J Biol Chem 267:6796–6800

    PubMed  CAS  Google Scholar 

  79. Gray TE, Fersht AR (1991) Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292:254–258

    Article  PubMed  CAS  Google Scholar 

  80. Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34:5303–5308

    Article  PubMed  CAS  Google Scholar 

  81. Chaudhuri TK, Verma VK, Maheshwari A (2009) GroEL assisted folding of large polypeptide substrates in Escherichia coli : Present scenario and assignments for the future. Prog Biophys Mol Biol 99:42–50

    Article  PubMed  CAS  Google Scholar 

  82. Kanno R, Koike-Takeshita A, Yokoyama K, Taguchi H, Mitsuoka K (2009) Cryo-EM structure of the native GroEL–GroES complex from thermus thermophilus encapsulating substrate inside the cavity. Structure 17:287–293

    Article  PubMed  CAS  Google Scholar 

  83. Nojima T, Murayama S, Yoshida M, Motojima F (2008) Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL. J Biol Chem 283:18385–18392

    Article  PubMed  CAS  Google Scholar 

  84. Inbar E, Horovitz A (1997) GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL–GroES complex. Biochemistry 36:12276–12281

    Article  PubMed  CAS  Google Scholar 

  85. Farr GW, Fenton WA, Chaudhuri TK, Clare DK, Saibil HR, Horwich AL (2003) Folding with and without encapsulation by cis- and trans-only GroEL–GroES complexes. EMBO J 22:3220–3230

    Article  PubMed  CAS  Google Scholar 

  86. Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    Article  PubMed  CAS  Google Scholar 

  87. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  88. Ellis RJ (1996) Revisiting the Anfinsen cage. Fold Des 1:R9–R15

    Article  PubMed  CAS  Google Scholar 

  89. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

  90. Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15:303–311

    Article  PubMed  CAS  Google Scholar 

  91. Taguchi H (2005) Chaperonin GroEL meets the substrate protein as a “load” of the rings. J Biochem 137:543–549

    Article  PubMed  CAS  Google Scholar 

  92. Wang JD, Weissman JS (1999) Thinking outside the box: new insights into the mechanism of GroEL-mediated protein folding. Nat Struct Biol 6:597–600

    Article  PubMed  CAS  Google Scholar 

  93. Chennubhotla C, Yang Z, Bahar I (2008) Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Mol BioSyst 4:287–292

    Article  PubMed  CAS  Google Scholar 

  94. Hyeon C, Lorimer GH, Thirumalai D (2006) Dynamics of allosteric transitions in GroEL. Proc Natl Acad Sci USA 103:18939–18944

    Article  PubMed  CAS  Google Scholar 

  95. Tehver R, Chen J, Thirumalai D (2009) Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. J Mol Biol 387:390–406

    Article  PubMed  CAS  Google Scholar 

  96. Tehver R, Thirumalai D (2008) Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation. J Mol Biol 377:1279–1295

    Article  PubMed  CAS  Google Scholar 

  97. Paul S, Singh C, Mishra S, Chaudhuri TK (2007) The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding. FASEB J 21:2874–2885

    Article  PubMed  CAS  Google Scholar 

  98. Jones H, Preuss M, Wright M, Miller AD (2006) The mechanism of GroEL/GroES folding/refolding of protein substrates revisited. Org Biomol Chem 4:1223–1235

    Article  PubMed  CAS  Google Scholar 

  99. Ying BW, Taguchi H, Ueda T (2006) Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding. J Biol Chem 281:21813–21819

    Article  PubMed  CAS  Google Scholar 

  100. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci USA 96:11211–11216

    Article  PubMed  CAS  Google Scholar 

  101. Arie JP, Miot M, Sassoon N, Betton JM (2006) Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol Microbiol 62:427–437

    Article  PubMed  CAS  Google Scholar 

  102. Carrio MM, Corchero JL, Villaverde A (1998) Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett 169:9–15

    Article  PubMed  CAS  Google Scholar 

  103. Gonzalez-Montalban N, Garcia-Fruitos E, Ventura S, Aris A, Villaverde A (2006) The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb Cell Fact 5:26

    Article  PubMed  CAS  Google Scholar 

  104. Bowden GA, Paredes AM, Georgiou G (1991) Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N Y) 9:725–730

    Article  CAS  Google Scholar 

  105. Carrio MM, Cubarsi R, Villaverde A (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett 471:7–11

    Article  PubMed  CAS  Google Scholar 

  106. Carrio MM, Villaverde A (2002) Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 96:3–12

    Article  PubMed  CAS  Google Scholar 

  107. Schrodel A, de Marco A (2005) Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6:10

    Article  PubMed  CAS  Google Scholar 

  108. Rinas U, Hoffmann F, Betiku E, Estape D, Marten S (2007) Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 127:244–257

    Article  PubMed  CAS  Google Scholar 

  109. Carrio MM, Villaverde A (2005) Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187:3599–3601

    Article  PubMed  CAS  Google Scholar 

  110. Wilson MR, Yerbury JJ, Poon S (2008) Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Mol BioSyst 4:42–52

    Article  PubMed  CAS  Google Scholar 

  111. Lybarger SR, Maddock JR (2001) Polarity in action: asymmetric protein localization in bacteria. J Bacteriol 183:3261–3267

    Article  PubMed  CAS  Google Scholar 

  112. Shapiro L, McAdams HH, Losick R (2002) Generating and exploiting polarity in bacteria. Science 298:1942–1946

    Article  PubMed  CAS  Google Scholar 

  113. Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616

    Article  PubMed  CAS  Google Scholar 

  114. Schlieker C, Tews I, Bukau B, Mogk A (2004) Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett 578:351–356

    Article  PubMed  CAS  Google Scholar 

  115. Ben-Zvi A, De Los Rios P, Dietler G, Goloubinoff P (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J Biol Chem 279:37298–37303

    Article  PubMed  CAS  Google Scholar 

  116. De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 103:6166–6171

    Article  PubMed  CAS  Google Scholar 

  117. Gonzalez-Montalban N, Carrio MM, Cuatrecasas S, Aris A, Villaverde A (2005) Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol 118:406–412

    Article  PubMed  CAS  Google Scholar 

  118. Carrio MM, Villaverde A (2003) Role of molecular chaperones in inclusion body formation. FEBS Lett 537:215–221

    Article  PubMed  CAS  Google Scholar 

  119. Werbeck ND, Kellner JN, Barends TR, Reinstein J (2009) Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies. Biochemistry 48:7240–7250

    Article  PubMed  CAS  Google Scholar 

  120. Werbeck ND, Schlee S, Reinstein J (2008) Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J Mol Biol 378:178–190

    Article  PubMed  CAS  Google Scholar 

  121. Acebron SP, Martin I, del Castillo U, Moro F, Muga A (2009) DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett 583:2991–2996

    Article  PubMed  CAS  Google Scholar 

  122. Lewandowska A, Matuszewska M, Liberek K (2007) Conformational properties of aggregated polypeptides determine ClpB-dependence in the disaggregation process. J Mol Biol 371:800–811

    Article  PubMed  CAS  Google Scholar 

  123. Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J Biol Chem 271:11141–11147

    Article  PubMed  CAS  Google Scholar 

  124. Watanabe YH, Nakazaki Y, Suno R, Yoshida M (2009) Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity. Biochem J 421:71–77

    Article  PubMed  CAS  Google Scholar 

  125. Diemand AV, Lupas AN (2006) Modeling AAA+ ring complexes from monomeric structures. J Struct Biol 156:230–243

    PubMed  CAS  Google Scholar 

  126. Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34(1):40–48

    Article  PubMed  CAS  Google Scholar 

  127. Mogk A, Bukau B (2004) Molecular chaperones: structure of a protein disaggregase. Curr Biol 14:R78–R80

    Article  PubMed  CAS  Google Scholar 

  128. Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585–595

    Article  PubMed  CAS  Google Scholar 

  129. Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042

    Article  PubMed  CAS  Google Scholar 

  130. Mogk A, Schlieker C, Strub C, Rist W, Weibezahn J, Bukau B (2003) Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J Biol Chem 278:17615–17624

    Article  PubMed  CAS  Google Scholar 

  131. Weibezahn J, Bukau B, Mogk A (2004) Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb Cell Fact 3:1

    Article  PubMed  Google Scholar 

  132. Carrio MM, Corchero JL, Villaverde A (1999) Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. Biochim Biophys Acta 1434:170–176

    PubMed  CAS  Google Scholar 

  133. Carrio MM, Villaverde A (2001) Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett 489:29–33

    Article  PubMed  CAS  Google Scholar 

  134. Cubarsi R, Carrio MM, Villaverde A (2005) A mathematical approach to molecular organization and proteolytic disintegration of bacterial inclusion bodies. Math Med Biol 22:209–226

    Article  PubMed  CAS  Google Scholar 

  135. de Groot NS, Espargaro A, Morell M, Ventura S (2008) Studies on bacterial inclusion bodies. Future Microbiol 3:423–435

    Article  PubMed  Google Scholar 

  136. Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  PubMed  CAS  Google Scholar 

  137. Chen Y, Song J, Sui SF, Wang DN (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr Purif 32:221–231

    Article  PubMed  CAS  Google Scholar 

  138. Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL (2002) Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 26:218–228

    Article  PubMed  CAS  Google Scholar 

  139. Garcia-Fruitos E, Martinez-Alonso M, Gonzalez-Montalban N, Valli M, Mattanovich D, Villaverde A (2007) Divergent genetic control of protein solubility and conformational quality in Escherichia coli. J Mol Biol 374:195–205

    Article  PubMed  CAS  Google Scholar 

  140. Corchero JL, Cubarsi R, Enfors S, Villaverde A (1997) Limited in vivo proteolysis of aggregated proteins. Biochem Biophys Res Commun 237:325–330

    Article  PubMed  CAS  Google Scholar 

  141. Vera A, Aris A, Carrio M, Gonzalez-Montalban N, Villaverde A (2005) Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 119:163–171

    Article  PubMed  CAS  Google Scholar 

  142. Martinez-Alonso M, Garcia-Fruitos E, Villaverde A (2008) Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 101:1353–1358

    Article  PubMed  CAS  Google Scholar 

  143. Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2009) Learning about protein solubility from bacterial inclusion bodies. Microb Cell Fact 8:4

    Article  PubMed  CAS  Google Scholar 

  144. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact 4:27

    Article  PubMed  CAS  Google Scholar 

  145. Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A (2004) Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11:607–615

    Article  PubMed  CAS  Google Scholar 

  146. Garcia-Fruitos E, Aris A, Villaverde A (2007) Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 73:289–294

    Article  PubMed  CAS  Google Scholar 

  147. Speed MA, Wang DI, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283–1287

    Article  PubMed  CAS  Google Scholar 

  148. Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  CAS  Google Scholar 

  149. Hart RA, Rinas U, Bailey JE (1990) Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J Biol Chem 265:12728–12733

    PubMed  CAS  Google Scholar 

  150. Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808

    Article  PubMed  CAS  Google Scholar 

  151. de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273:658–668

    Article  PubMed  CAS  Google Scholar 

  152. Rousseau F, Serrano L, Schymkowitz JW (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 355:1037–1047

    Article  PubMed  CAS  Google Scholar 

  153. Ventura S, Lacroix E, Serrano L (2002) Insights into the origin of the tendency of the PI3-SH3 domain to form amyloid fibrils. J Mol Biol 322:1147–1158

    Article  PubMed  CAS  Google Scholar 

  154. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  CAS  Google Scholar 

  155. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  PubMed  CAS  Google Scholar 

  156. Sanchez de Groot N, Pallares I, Aviles FX, Vendrell J, Ventura S (2005) Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol 5:18

    Article  PubMed  CAS  Google Scholar 

  157. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA 103:4074–4078

    Article  PubMed  CAS  Google Scholar 

  158. Monsellier E, Ramazzotti M, Taddei N, Chiti F (2008) Aggregation propensity of the human proteome. PLoS Comput Biol 4:e1000199

    Article  PubMed  CAS  Google Scholar 

  159. Castillo V, Ventura S (2009) Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol 5:e1000476

    Article  PubMed  CAS  Google Scholar 

  160. Vendruscolo M, Paci E, Karplus M, Dobson CM (2003) Structures and relative free energies of partially folded states of proteins. Proc Natl Acad Sci USA 100:14817–14821

    Article  PubMed  CAS  Google Scholar 

  161. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22

    Article  PubMed  CAS  Google Scholar 

  162. Espargaro A, Castillo V, de Groot NS, Ventura S (2008) The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case. J Mol Biol 378:1116–1131

    Article  PubMed  CAS  Google Scholar 

  163. Shorter J, Lindquist S (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 27:2712–2724

    Article  PubMed  CAS  Google Scholar 

  164. Wang L (2009) Towards revealing the structure of bacterial inclusion bodies. Prion 3:139–145

    Article  PubMed  Google Scholar 

  165. Wasmer C, Benkemoun L, Sabate R, Steinmetz MO, Coulary-Salin B, Wang L, Riek R, Saupe SJ, Meier BH (2009) Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218–289) are amyloids. Angew Chem Int Ed Engl 48:4858–4860

    Article  PubMed  CAS  Google Scholar 

  166. Sabate R, Espargaro A, Saupe SJ, Ventura S (2009) Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microb Cell Fact 8:56

    Article  PubMed  CAS  Google Scholar 

  167. Hammer ND, Wang X, McGuffie BA, Chapman MR (2008) Amyloids: friend or foe? J Alzheimers Dis 13:407–419

    PubMed  CAS  Google Scholar 

  168. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  PubMed  CAS  Google Scholar 

  169. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32:217–224

    Article  PubMed  CAS  Google Scholar 

  170. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA (2005) Amyloids—a functional coat for microorganisms. Nat Rev Microbiol 3:333–341

    Article  PubMed  CAS  Google Scholar 

  171. Otzen D, Nielsen PH (2008) We find them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci 65:910–927

    Article  PubMed  CAS  Google Scholar 

  172. Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    Article  PubMed  CAS  Google Scholar 

  173. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

    PubMed  CAS  Google Scholar 

  174. Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S (1993) The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536

    Article  PubMed  CAS  Google Scholar 

  175. Loferer H, Hammar M, Normark S (1997) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23

    Article  PubMed  CAS  Google Scholar 

  176. Nenninger AA, Robinson LS, Hultgren SJ (2009) Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci USA 106:900–905

    Article  PubMed  CAS  Google Scholar 

  177. Kanamaru S, Kurazono H, Terai A, Monden K, Kumon H, Mizunoe Y, Ogawa O, Yamamoto S (2006) Increased biofilm formation in Escherichia coli isolated from acute prostatitis. Int J Antimicrob Agents 28(Suppl 1):S21–S25

    Article  PubMed  CAS  Google Scholar 

  178. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726

    Article  PubMed  CAS  Google Scholar 

  179. Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740

    Article  PubMed  CAS  Google Scholar 

  180. Sakellaris H, Hannink NK, Rajakumar K, Bulach D, Hunt M, Sasakawa C, Adler B (2000) Curli loci of Shigella spp. Infect Immun 68:3780–3783

    Article  PubMed  CAS  Google Scholar 

  181. Claessen D, Stokroos I, Deelstra HJ, Penninga NA, Bormann C, Salas JA, Dijkhuizen L, Wosten HA (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53:433–443

    Article  PubMed  CAS  Google Scholar 

  182. Oh J, Kim JG, Jeon E, Yoo CH, Moon JS, Rhee S, Hwang I (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609

    Article  PubMed  CAS  Google Scholar 

  183. Destoumieux-Garzon D, Thomas X, Santamaria M, Goulard C, Barthelemy M, Boscher B, Bessin Y, Molle G, Pons AM, Letellier L, Peduzzi J, Rebuffat S (2003) Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 49:1031–1041

    Article  PubMed  CAS  Google Scholar 

  184. Bieler S, Estrada L, Lagos R, Baeza M, Castilla J, Soto C (2005) Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 280:26880–26885

    Article  PubMed  CAS  Google Scholar 

  185. Dang TX, Hotze EM, Rouiller I, Tweten RK, Wilson-Kubalek EM (2005) Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy. J Struct Biol 150:100–108

    Article  PubMed  CAS  Google Scholar 

  186. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    Article  PubMed  CAS  Google Scholar 

  187. Plomp M, Leighton TJ, Wheeler KE, Hill HD, Malkin AJ (2007) In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc Natl Acad Sci USA 104:9644–9649

    Article  PubMed  CAS  Google Scholar 

  188. Alteri CJ, Xicohtencatl-Cortes J, Hess S, Caballero-Olin G, Giron JA, Friedman RL (2007) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci USA 104:5145–5150

    Article  PubMed  CAS  Google Scholar 

  189. Lundmark K, Westermark GT, Olsen A, Westermark P (2005) Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci USA 102:6098–6102

    Article  PubMed  CAS  Google Scholar 

  190. Broxmeyer L (2002) Parkinson’s: another look. Med Hypotheses 59:373–377

    Article  PubMed  CAS  Google Scholar 

  191. Diaz-Corrales FJ, Colasante C, Contreras Q, Puig M, Serrano JA, Hernandez L, Beaman BL (2004) Nocardia otitidiscaviarum (GAM-5) induces Parkinsonian-like alterations in mouse. Braz J Med Biol Res 37:539–548

    Article  PubMed  CAS  Google Scholar 

  192. Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K (2006) Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging 27:228–236

    Article  PubMed  CAS  Google Scholar 

  193. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6

    Article  PubMed  CAS  Google Scholar 

  194. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332

    Article  PubMed  CAS  Google Scholar 

  195. de Groot NS, Ventura S (2010) Protein aggregation profile of the bacterial cytosol. PLoS One 5(2):e9383

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory has been supported by grants BIO2007-68046 (Ministerio de Ciencia e Innovación, Spain) and 2009-SGR-760 (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura.

Additional information

R. Sabate and N. S. de Groot contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabate, R., de Groot, N.S. & Ventura, S. Protein folding and aggregation in bacteria. Cell. Mol. Life Sci. 67, 2695–2715 (2010). https://doi.org/10.1007/s00018-010-0344-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0344-4

Keywords

Navigation