Yamada KM, Clark RAF (1996) Provisional matrix. In: Clark RAF (ed) The molecular and cellular biology of wound repair, 2nd edn. Plenum Press, New York, pp 51–82
Google Scholar
Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109(2):903–914
CAS
PubMed
Article
Google Scholar
Clark RAF (1996) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound repair, 2nd edn. Plenum Press, New York, pp 3–35
Google Scholar
McCallion RL, Ferguson MWJ (1996) Fetal wound healing and the development of antiscarring therapies for adult wound healing. In: Clark RAF (ed) The molecular and cellular biology of wound repair, 2nd edn. Plenum Press, New York, pp 561–590
Google Scholar
Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. doi:10.1038/nature07039
CAS
PubMed
Article
Google Scholar
Soo C, Beanes SR, Hu FY, Zhang X, Dang C, Chang G, Wang Y, Nishimura I, Freymiller E, Longaker MT, Lorenz HP, Ting K (2003) Ontogenetic transition in fetal wound transforming growth factor-beta regulation correlates with collagen organization. Am J Pathol 163(6):2459–2476
CAS
PubMed
Article
Google Scholar
Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447(7142):316–320. doi:10.1038/nature05766
CAS
PubMed
Article
Google Scholar
Dudas M, Wysocki A, Gelpi B, Tuan TL (2008) Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 63(5):502–512. doi:10.1203/PDR.0b013e31816a7453
PubMed
Article
Google Scholar
Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126(4):1172–1180. doi:10.1097/PRS.0b013e3181eae781
CAS
PubMed
Article
Google Scholar
Verrecchia F, Mauviel A (2002) Control of connective tissue gene expression by TGF beta: role of Smad proteins in fibrosis. Curr Rheumatol Rep 4(2):143–149
PubMed
Article
Google Scholar
Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827. doi:10.1096/fj.03-1273rev
CAS
PubMed
Article
Google Scholar
Li-Korotky HS, Hebda PA, Lo CY, Dohar JE (2007) Age-dependent differential expression of fibronectin variants in skin and airway mucosal wounds. Arch Otolaryngol Head Neck Surg 133(9):919–924. doi:10.1001/archotol.133.9.919
PubMed
Article
Google Scholar
Coolen NA, Schouten KC, Middelkoop E, Ulrich MM (2010) Comparison between human fetal and adult skin. Arch Dermatol Res 302(1):47–55. doi:10.1007/s00403-009-0989-8
PubMed
Article
Google Scholar
Martin P (1997) Wound healing-aiming for perfect skin regeneration. Science 276(5309):75–81
CAS
PubMed
Article
Google Scholar
Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. doi:10.1056/NEJM199909023411006
CAS
PubMed
Article
Google Scholar
Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3 (4). doi:10.1101/cshperspect.a005124
Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19(2):134–148. doi:10.1111/j.1524-475X.2011.00673.x
PubMed
Article
Google Scholar
Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. doi:10.1177/0022034509359125
CAS
PubMed
Article
Google Scholar
Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH (2011) Macrophages in skin injury and repair. Immunobiology 216(7):753–762. doi:10.1016/j.imbio.2011.01.001
PubMed
Article
CAS
Google Scholar
Clark RA (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 94(6 Suppl):128S–134S
CAS
PubMed
Article
Google Scholar
Grinnell F, Toda K, Takashima A (1987) Activation of keratinocyte fibronectin receptor function during cutaneous wound healing. J Cell Sci Suppl 8:199–209
CAS
PubMed
Google Scholar
Moulin V, Auger FA, Garrel D, Germain L (2000) Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns 26(1):3–12
CAS
PubMed
Article
Google Scholar
O’Toole EA (2001) Extracellular matrix and keratinocyte migration. Clin Exp Dermatol 26(6):525–530
PubMed
Article
Google Scholar
Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1(5):260–267. doi:10.1002/emmm.200900033
CAS
PubMed
Article
Google Scholar
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM (2000) Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102(4):451–461
CAS
PubMed
Article
Google Scholar
Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi:10.1038/nrm2636
CAS
PubMed
Article
Google Scholar
Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354. doi:10.1038/nm1328
CAS
PubMed
Article
Google Scholar
Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389. doi:10.1126/science.1184733
CAS
PubMed
Article
Google Scholar
Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4(5):427–439. doi:10.1016/j.stem.2009.04.014
CAS
PubMed
Article
Google Scholar
Langton AK, Herrick SE, Headon DJ (2008) An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 128(5):1311–1318. doi:10.1038/sj.jid.5701178
CAS
PubMed
Article
Google Scholar
Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63(1):21–29
CAS
PubMed
Google Scholar
Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3):526–537. doi:10.1038/sj.jid.5700613
CAS
PubMed
Article
Google Scholar
Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66
CAS
PubMed
Google Scholar
Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487. doi:10.1126/science.1094291
CAS
PubMed
Article
Google Scholar
Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10(7):468–477. doi:10.1038/nrm2717
CAS
PubMed
Google Scholar
Archbold HC, Yang YX, Chen L, Cadigan KM (2012) How do they do Wnt they do? Regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol (Oxf) 204(1):74–109. doi:10.1111/j.1748-1716.2011.02293.x
CAS
Article
Google Scholar
Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1(2):a002881. doi:10.1101/cshperspect.a002881
PubMed
Article
Google Scholar
Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727. doi:10.1016/j.cellsig.2009.11.021
CAS
PubMed
Article
Google Scholar
Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775(1):163–180. doi:10.1016/j.bbcan.2006.09.001
CAS
PubMed
Google Scholar
Lilien J, Balsamo J (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17(5):459–465. doi:10.1016/j.ceb.2005.08.009
CAS
PubMed
Article
Google Scholar
Widelitz RB (2008) Wnt signaling in skin organogenesis. Organogenesis 4(2):123–133
PubMed
Article
Google Scholar
Yamaguchi Y, Hearing VJ, Itami S, Yoshikawa K, Katayama I (2005) Mesenchymal-epithelial interactions in the skin: aiming for site-specific tissue regeneration. J Dermatol Sci 40(1):1–9. doi:10.1016/j.jdermsci.2005.04.006
CAS
PubMed
Article
Google Scholar
Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA (2006) Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296(1):164–176. doi:10.1016/j.ydbio.2006.04.449
CAS
PubMed
Article
Google Scholar
Ohtola J, Myers J, Akhtar-Zaidi B, Zuzindlak D, Sandesara P, Yeh K, Mackem S, Atit R (2008) beta-Catenin has sequential roles in the survival and specification of ventral dermis. Development 135(13):2321–2329. doi:10.1242/dev.021170
CAS
PubMed
Article
Google Scholar
Driskell RR, Clavel C, Rendl M, Watt FM (2011) Hair follicle dermal papilla cells at a glance. J Cell Sci 124(Pt 8):1179–1182. doi:10.1242/jcs.082446
CAS
PubMed
Article
Google Scholar
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533–545
CAS
PubMed
Article
Google Scholar
Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2(5):643–653
CAS
PubMed
Article
Google Scholar
Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17(1):49–61. doi:10.1016/j.devcel.2009.05.011
PubMed
Article
CAS
Google Scholar
DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126(20):4557–4568
CAS
PubMed
Google Scholar
Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95(5):605–614
CAS
PubMed
Article
Google Scholar
Okuse T, Chiba T, Katsuumi I, Imai K (2005) Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen 13(5):491–497. doi:10.1111/j.1067-1927.2005.00069.x
PubMed
Article
Google Scholar
Labus MB, Stirk CM, Thompson WD, Melvin WT (1998) Expression of Wnt genes in early wound healing. Wound Repair Regen 6(1):58–64
CAS
PubMed
Article
Google Scholar
Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, Whetstone H, Guha A, Alman BA (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20(6):692–701. doi:10.1096/fj.05-4759com
CAS
PubMed
Article
Google Scholar
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD, Tomic-Canic M (2005) Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol 167(1):59–69
CAS
PubMed
Article
Google Scholar
Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, Alman BA (2002) beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 99(10):6973–6978. doi:10.1073/pnas.102657399
CAS
PubMed
Article
Google Scholar
Cheon S, Poon R, Yu C, Khoury M, Shenker R, Fish J, Alman BA (2005) Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Invest 85(3):416–425. doi:10.1038/labinvest.3700237
CAS
PubMed
Article
Google Scholar
Miragliotta V, Ipina Z, Lefebvre-Lavoie J, Lussier JG, Theoret CL (2008) Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair. BMC Physiol 8:1. doi:10.1186/1472-6793-8-1
PubMed
Article
CAS
Google Scholar
Kapoor M, Liu S, Shi-wen X, Huh K, McCann M, Denton CP, Woodgett JR, Abraham DJ, Leask A (2008) GSK-3beta in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1-dependent mechanism. J Clin Invest 118(10):3279–3290. doi:10.1172/JCI35381
CAS
PubMed
Google Scholar
Poon R, Nik SA, Ahn J, Slade L, Alman BA (2009) Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction. BMC Cell Biol 10:38. doi:10.1186/1471-2121-10-38
PubMed
Article
CAS
Google Scholar
Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (2011) Pax7 expressing cells contribute to dermal wound repair; regulating scar size through a beta-catenin mediated process. Stem Cells 29(9):1371–1379. doi:10.1002/stem.688
CAS
PubMed
Google Scholar
Sato M (2006) Upregulation of the Wnt/beta-catenin pathway induced by transforming growth factor-beta in hypertrophic scars and keloids. Acta Derm Venereol 86(4):300–307. doi:10.2340/00015555-0101
CAS
PubMed
Article
Google Scholar
Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA (2011) Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 286(31):27687–27697. doi:10.1074/jbc.M111.261677
CAS
PubMed
Article
Google Scholar
Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3(7):683–686. doi:10.1038/35083081
CAS
PubMed
Article
Google Scholar
Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, Alman BA (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4(7):e249. doi:10.1371/journal.pmed.0040249
PubMed
Article
CAS
Google Scholar
Cheon SS, Nadesan P, Poon R, Alman BA (2004) Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 293(2):267–274
CAS
PubMed
Article
Google Scholar
Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S (2007) TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations. Exp Cell Res 313(13):2887–2895. doi:10.1016/j.yexcr.2007.05.024
CAS
PubMed
Article
Google Scholar
Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687
CAS
PubMed
Article
Google Scholar
Berrier AL, Yamada KM (2007) Cell-matrix adhesion. J Cell Physiol 213(3):565–573. doi:10.1002/jcp.21237
CAS
PubMed
Article
Google Scholar
Amini-Nik S, Kraemer D, Cowan ML, Gunaratne K, Nadesan P, Alman BA, Miller RJ (2010) Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS One 5(9). doi:10.1371/journal.pone.0013053
Alman BA, Kelley SP, Nam D (2011) Heal thyself: using endogenous regeneration to repair bone. Tissue Eng Part B Rev 17(6):431–436. doi:10.1089/ten.TEB.2011.0189
CAS
PubMed
Article
Google Scholar
Alfaro MP, Saraswati S, Young PP (2011) Molecular mediators of mesenchymal stem cell biology. Vitam Horm 87:39–59. doi:10.1016/B978-0-12-386015-6.00023-8
CAS
PubMed
Article
Google Scholar
Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21(10):1226–1238. doi:10.1089/hum.2010.173
CAS
PubMed
Article
Google Scholar
Alfaro MP, Vincent A, Saraswati S, Thorne CA, Hong CC, Lee E, Young PP (2010) sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 285(46):35645–35653. doi:10.1074/jbc.M110.135335
CAS
PubMed
Article
Google Scholar
Collins CA, Kretzschmar K, Watt FM (2011) Reprogramming adult dermis to a neonatal state through epidermal activation of beta-catenin. Development 138(23):5189–5199. doi:10.1242/dev.064592
CAS
PubMed
Article
Google Scholar
Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, Hartner A, Sekiguchi K, Reichardt LF, Watt FM (2011) The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144(4):577–589. doi:10.1016/j.cell.2011.01.014
CAS
PubMed
Article
Google Scholar
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601. doi:10.1111/j.1524-475X.2008.00410.x
PubMed
Article
Google Scholar
Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162. doi:10.1111/j.1524-475X.2009.00466.x
PubMed
Article
Google Scholar
Owens P, Han G, Li AG, Wang XJ (2008) The role of Smads in skin development. J Invest Dermatol 128(4):783–790. doi:10.1038/sj.jid.5700969
CAS
PubMed
Article
Google Scholar
Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11(2):97–105. doi:10.1038/embor.2009.276
CAS
PubMed
Article
Google Scholar
Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29(5):196–202. doi:10.3109/08977194.2011.595714
CAS
PubMed
Article
Google Scholar
Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347(1):11–20. doi:10.1007/s00441-011-1201-y
CAS
PubMed
Article
Google Scholar
Landstrom M (2010) The TAK1-TRAF6 signalling pathway. Int J Biochem Cell Biol 42(5):585–589. doi:10.1016/j.biocel.2009.12.023
PubMed
Article
CAS
Google Scholar
Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139. doi:10.1038/cr.2008.328
CAS
PubMed
Article
Google Scholar
Foitzik K, Paus R, Doetschman T, Dotto GP (1999) The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. Dev Biol 212(2):278–289. doi:10.1006/dbio.1999.9325
CAS
PubMed
Article
Google Scholar
Han G, Li AG, Liang YY, Owens P, He W, Lu S, Yoshimatsu Y, Wang D, Ten Dijke P, Lin X, Wang XJ (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell 11(3):301–312. doi:10.1016/j.devcel.2006.06.014
CAS
PubMed
Article
Google Scholar
Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108(Pt 3):985–1002
CAS
PubMed
Google Scholar
Puolakkainen PA, Reed MJ, Gombotz WR, Twardzik DR, Abrass IB, Sage HE (1995) Acceleration of wound healing in aged rats by topical application of transforming growth factor-beta(1). Wound Repair Regen 3(3):330–339. doi:10.1046/j.1524-475X.1995.t01-1-30314.x
CAS
PubMed
Article
Google Scholar
Schreier T, Degen E, Baschong W (1993) Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing. Res Exp Med (Berl) 193(4):195–205
CAS
Article
Google Scholar
Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247(3):597–604
CAS
PubMed
Google Scholar
Hocevar BA, Brown TL, Howe PH (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18(5):1345–1356. doi:10.1093/emboj/18.5.1345
CAS
PubMed
Article
Google Scholar
Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111
CAS
PubMed
Article
Google Scholar
Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA (2010) Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol 176(1):98–107. doi:10.2353/ajpath.2010.090283
CAS
PubMed
Article
Google Scholar
Leask A (2011) CCN2: a bona fide target for anti-fibrotic drug intervention. J Cell Commun Signal 5(2):131–133. doi:10.1007/s12079-011-0125-3
PubMed
Article
Google Scholar
Trojanowska M (2009) Noncanonical transforming growth factor beta signaling in scleroderma fibrosis. Curr Opin Rheumatol 21(6):623–629. doi:10.1097/BOR.0b013e32833038ce
CAS
PubMed
Article
Google Scholar
Cicha I, Goppelt-Struebe M (2009) Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors 35(2):200–208. doi:10.1002/biof.30
CAS
PubMed
Article
Google Scholar
Leask A, Parapuram SK, Shi-Wen X, Abraham DJ (2009) Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal 3(2):89–94. doi:10.1007/s12079-009-0037-7
PubMed
Article
Google Scholar
Lee CH, Shah B, Moioli EK, Mao JJ (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349. doi:10.1172/JCI43230
CAS
PubMed
Article
Google Scholar
Nakerakanti SS, Bujor AM, Trojanowska M (2011) CCN2 is required for the TGF-beta induced activation of Smad1-Erk1/2 signaling network. PLoS ONE 6(7):e21911. doi:10.1371/journal.pone.0021911
CAS
PubMed
Article
Google Scholar
Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR (1999) Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 13(13):1774–1786
CAS
PubMed
Google Scholar
Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1(5):260–266. doi:10.1038/12971
CAS
PubMed
Article
Google Scholar
Crowe MJ, Doetschman T, Greenhalgh DG (2000) Delayed wound healing in immunodeficient TGF-beta 1 knockout mice. J Invest Dermatol 115(1):3–11. doi:10.1046/j.1523-1747.2000.00010.x
CAS
PubMed
Article
Google Scholar
Denton CP, Khan K, Hoyles RK, Shiwen X, Leoni P, Chen Y, Eastwood M, Abraham DJ (2009) Inducible lineage-specific deletion of TbetaRII in fibroblasts defines a pivotal regulatory role during adult skin wound healing. J Invest Dermatol 129(1):194–204. doi:10.1038/jid.2008.171
CAS
PubMed
Article
Google Scholar
Pietenpol JA, Holt JT, Stein RW, Moses HL (1990) Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci USA 87(10):3758–3762
CAS
PubMed
Article
Google Scholar
Reynolds LE, Conti FJ, Silva R, Robinson SD, Iyer V, Rudling R, Cross B, Nye E, Hart IR, Dipersio CM, Hodivala-Dilke KM (2008) alpha3beta1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J Clin Invest 118(3):965–974. doi:10.1172/JCI33538
CAS
PubMed
Google Scholar
Singer AJ, Huang SS, Huang JS, McClain SA, Romanov A, Rooney J, Zimmerman T (2009) A novel TGF-beta antagonist speeds reepithelialization and reduces scarring of partial thickness porcine burns. J Burn Care Res 30(2):329–334. doi:10.1097/BCR.0b013e31819a6369
PubMed
Article
Google Scholar
Han G, Li F, Ten Dijke P, Wang XJ (2011) Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. Am J Pathol 179(4):1768–1779. doi:10.1016/j.ajpath.2011.06.003
CAS
PubMed
Article
Google Scholar
Yang CC, Lin SD, Yu HS (1997) Effect of growth factors on dermal fibroblast contraction in normal skin and hypertrophic scar. J Dermatol Sci 14(2):162–169
CAS
PubMed
Article
Google Scholar
Mauviel A (2009) Transforming growth factor-beta signaling in skin: stromal to epithelial cross-talk. J Invest Dermatol 129(1):7–9. doi:10.1038/jid.2008.385
CAS
PubMed
Article
Google Scholar
Le Poole IC, Boyce ST (1999) Keratinocytes suppress transforming growth factor-beta1 expression by fibroblasts in cultured skin substitutes. Br J Dermatol 140(3):409–416
PubMed
Article
Google Scholar
Sisco M, Kryger ZB, O’Shaughnessy KD, Kim PS, Schultz GS, Ding XZ, Roy NK, Dean NM, Mustoe TA (2008) Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen 16(5):661–673. doi:10.1111/j.1524-475X.2008.00416.x
PubMed
Article
Google Scholar
Lin RY, Adzick NS (1996) The role of the fetal fibroblast and transforming growth factor-beta in a model of human fetal wound repair. Semin Pediatr Surg 5(3):165–174
CAS
PubMed
Google Scholar
Scheid A, Wenger RH, Schaffer L, Camenisch I, Distler O, Ferenc A, Cristina H, Ryan HE, Johnson RS, Wagner KF, Stauffer UG, Bauer C, Gassmann M, Meuli M (2002) Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB J 16(3):411–413. doi:10.1096/fj.01-0496fje
CAS
PubMed
Google Scholar
Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, Isaka K (2004) Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology 145(9):4113–4118. doi:10.1210/en.2003-1639
CAS
PubMed
Article
Google Scholar
Wu L, Siddiqui A, Morris DE, Cox DA, Roth SI, Mustoe TA (1997) Transforming growth factor beta 3 (TGF beta 3) accelerates wound healing without alteration of scar prominence. Histologic and competitive reverse-transcription-polymerase chain reaction studies. Arch Surg 132(7):753–760
CAS
PubMed
Article
Google Scholar
Occleston NL, O’Kane S, Laverty HG, Cooper M, Fairlamb D, Mason T, Bush JA, Ferguson MW (2011) Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring. Wound Repair Regen 19(Suppl 1):s38–s48. doi:10.1111/j.1524-475X.2011.00711.x
PubMed
Article
Google Scholar
Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT, Li W (2006) A “traffic control” role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 172(7):1093–1105. doi:10.1083/jcb.200507111
CAS
PubMed
Article
Google Scholar
Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS (1992) Scarless wound repair: a human fetal skin model. Development 114(1):253–259
CAS
PubMed
Google Scholar
McCollum PT, Bush JA, James G, Mason T, O’Kane S, McCollum C, Krievins D, Shiralkar S, Ferguson MW (2011) Randomized phase II clinical trial of avotermin versus placebo for scar improvement. Br J Surg 98(7):925–934. doi:10.1002/bjs.7438
CAS
PubMed
Article
Google Scholar
Renovo (2011) www.renovo.com/en/news/juvista-eu-phase-3-trial-results. Accessed 18 Sept 2012
Okuyama R, Tagami H, Aiba S (2008) Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci 49(3):187–194. doi:10.1016/j.jdermsci.2007.05.017
PubMed
Article
CAS
Google Scholar
Watt FM, Estrach S, Ambler CA (2008) Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 20(2):171–179. doi:10.1016/j.ceb.2008.01.010
CAS
PubMed
Article
Google Scholar
Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309. doi:10.1016/S0070-2153(10)92009-7
CAS
PubMed
Article
Google Scholar
Blanpain C, Lowry WE, Pasolli HA, Fuchs E (2006) Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20(21):3022–3035. doi:10.1101/gad.1477606
CAS
PubMed
Article
Google Scholar
Moriyama M, Durham AD, Moriyama H, Hasegawa K, Nishikawa S, Radtke F, Osawa M (2008) Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell 14(4):594–604. doi:10.1016/j.devcel.2008.01.017
CAS
PubMed
Article
Google Scholar
Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E (2011) A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145(7):1129–1141. doi:10.1016/j.cell.2011.05.030
CAS
PubMed
Article
Google Scholar
Powell BC, Passmore EA, Nesci A, Dunn SM (1998) The Notch signalling pathway in hair growth. Mech Dev 78(1–2):189–192
CAS
PubMed
Article
Google Scholar
Favier B, Fliniaux I, Thelu J, Viallet JP, Demarchez M, Jahoda CA, Dhouailly D (2000) Localisation of members of the notch system and the differentiation of vibrissa hair follicles: receptors, ligands, and fringe modulators. Dev Dyn 218(3):426–437. doi:10.1002/1097-0177(200007)218:3<426:AID-DVDY1004>3.0.CO;2-4
CAS
PubMed
Article
Google Scholar
Thelu J, Rossio P, Favier B (2002) Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2:7
PubMed
Article
Google Scholar
Chigurupati S, Arumugam TV, Son TG, Lathia JD, Jameel S, Mughal MR, Tang SC, Jo DG, Camandola S, Giunta M, Rakova I, McDonnell N, Miele L, Mattson MP, Poosala S (2007) Involvement of notch signaling in wound healing. PLoS ONE 2(11):e1167. doi:10.1371/journal.pone.0001167
PubMed
Article
CAS
Google Scholar
Outtz HH, Wu JK, Wang X, Kitajewski J (2010) Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J Immunol 185(7):4363–4373. doi:10.4049/jimmunol.1000720
PubMed
Article
CAS
Google Scholar
Caiado F, Real C, Carvalho T, Dias S (2008) Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential. PLoS ONE 3(11):e3752. doi:10.1371/journal.pone.0003752
PubMed
Article
CAS
Google Scholar
Athar M, Tang X, Lee JL, Kopelovich L, Kim AL (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15(9):667–677. doi:10.1111/j.1600-0625.2006.00473.x
CAS
PubMed
Article
Google Scholar
Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20(12):1651–1666. doi:10.1101/gad.1411406
CAS
PubMed
Article
Google Scholar
St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8(19):1058–1068
CAS
PubMed
Article
Google Scholar
Karlsson L, Bondjers C, Betsholtz C (1999) Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126(12):2611–2621
CAS
PubMed
Google Scholar
Niemann C, Unden AB, Lyle S, Zouboulis ChC, Toftgard R, Watt FM (2003) Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci USA 100(Suppl 1):11873–11880. doi:10.1073/pnas.1834202100
CAS
PubMed
Article
Google Scholar
Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565. doi:10.1016/j.stem.2011.02.021
CAS
PubMed
Article
Google Scholar
Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, Cooper MK, Gaffield W, Westphal H, Beachy PA, Dlugosz AA (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205(1):1–9. doi:10.1006/dbio.1998.9103
CAS
PubMed
Article
Google Scholar
Tasouri E, Tucker KL (2011) Primary cilia and organogenesis: is Hedgehog the only sculptor? Cell Tissue Res 345(1):21–40. doi:10.1007/s00441-011-1192-8
PubMed
Article
Google Scholar
Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo DW (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113(20):2413–2424. doi:10.1161/CIRCULATIONAHA.105.603167
CAS
PubMed
Article
Google Scholar
Le H, Kleinerman R, Lerman OZ, Brown D, Galiano R, Gurtner GC, Warren SM, Levine JP, Saadeh PB (2008) Hedgehog signaling is essential for normal wound healing. Wound Repair Regen 16(6):768–773. doi:10.1111/j.1524-475X.2008.00430.x
PubMed
Article
Google Scholar
Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366. doi:10.1096/fj.06-6926com
CAS
PubMed
Article
Google Scholar
Luo JD, Hu TP, Wang L, Chen MS, Liu SM, Chen AF (2009) Sonic hedgehog improves delayed wound healing via enhancing cutaneous nitric oxide function in diabetes. Am J Physiol Endocrinol Metab 297(2):E525–E531. doi:10.1152/ajpendo.00308.2009
CAS
PubMed
Article
Google Scholar
Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3(2):121–126. doi:10.1038/ni0202-121
CAS
PubMed
Article
Google Scholar
Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci USA 103(33):12451–12456. doi:10.1073/pnas.0604065103
CAS
PubMed
Article
Google Scholar
Carlson BM (2005) Some principles of regeneration in mammalian systems. Anat Rec B New Anat 287(1):4–13. doi:10.1002/ar.b.20079
PubMed
Google Scholar
Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K (2005) Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat 287(1):14–24. doi:10.1002/ar.b.20082
PubMed
Google Scholar
Sanchez Alvarado A (2006) Planarian regeneration: its end is its beginning. Cell 124(2):241–245. doi:10.1016/j.cell.2006.01.012
CAS
PubMed
Article
Google Scholar
Petersen CP, Reddien PW (2011) Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332(6031):852–855. doi:10.1126/science.1202143
CAS
PubMed
Article
Google Scholar
Adell T, Salo E, Boutros M, Bartscherer K (2009) Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136(6):905–910. doi:10.1242/dev.033761
CAS
PubMed
Article
Google Scholar
De Robertis EM (2010) Wnt signaling in axial patterning and regeneration: lessons from planaria. Sci Signal 3(127):pe21. doi:10.1126/scisignal.3127pe21
PubMed
Article
CAS
Google Scholar
Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci USA 106(52):22329–22334. doi:10.1073/pnas.0907464106
CAS
PubMed
Article
Google Scholar
Mace KA, Pearson JC, McGinnis W (2005) An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head. Science 308(5720):381–385. doi:10.1126/science.1107573
CAS
PubMed
Article
Google Scholar
Ting SB, Caddy J, Hislop N, Wilanowski T, Auden A, Zhao LL, Ellis S, Kaur P, Uchida Y, Holleran WM, Elias PM, Cunningham JM, Jane SM (2005) A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308(5720):411–413. doi:10.1126/science.1107511
CAS
PubMed
Article
Google Scholar
Woolner S, Jacinto A, Martin P (2005) The small GTPase Rac plays multiple roles in epithelial sheet fusion-dynamic studies of Drosophila dorsal closure. Dev Biol 282(1):163–173. doi:10.1016/j.ydbio.2005.03.005
CAS
PubMed
Article
Google Scholar
Samakovlis C, Manning G, Steneberg P, Hacohen N, Cantera R, Krasnow MA (1996) Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122(11):3531–3536
CAS
PubMed
Google Scholar
Harden N (2002) Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 70(4–5):181–203. doi:10.1046/j.1432-0436.2002.700408.x
CAS
PubMed
Article
Google Scholar
McEwen DG, Cox RT, Peifer M (2000) The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development 127(16):3607–3617
CAS
PubMed
Google Scholar
Childs SR, Wrana JL, Arora K, Attisano L, O’Connor MB, Massague J (1993) Identification of a Drosophila activin receptor. Proc Natl Acad Sci USA 90(20):9475–9479
CAS
PubMed
Article
Google Scholar
Brummel TJ, Twombly V, Marques G, Wrana JL, Newfeld SJ, Attisano L, Massague J, O’Connor MB, Gelbart WM (1994) Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78(2):251–261
CAS
PubMed
Article
Google Scholar
Shao J, Qian X, Zhang C, Xu Z (2009) Fin regeneration from tail segment with musculature, endoskeleton, and scales. J Exp Zool B Mol Dev Evol 312(7):762–769. doi:10.1002/jez.b.21295
PubMed
Article
Google Scholar
Yoshinari N, Kawakami A (2011) Mature and juvenile tissue models of regeneration in small fish species. Biol Bull 221(1):62–78
CAS
PubMed
Google Scholar
Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, Becerra J (2002) Cell proliferation during blastema formation in the regenerating teleost fin. Dev Dyn 223(2):262–272. doi:10.1002/dvdy.10055
PubMed
Article
Google Scholar
Quint E, Smith A, Avaron F, Laforest L, Miles J, Gaffield W, Akimenko MA (2002) Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc Natl Acad Sci USA 99(13):8713–8718. doi:10.1073/pnas.122571799
CAS
PubMed
Google Scholar
Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT (2000) Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222(2):347–358. doi:10.1006/dbio.2000.9722
CAS
PubMed
Article
Google Scholar
Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134(3):479–489. doi:10.1242/dev.001123
CAS
PubMed
Article
Google Scholar
Bai S, Thummel R, Godwin AR, Nagase H, Itoh Y, Li L, Evans R, McDermott J, Seiki M, Sarras MP Jr (2005) Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol 24(4):247–260. doi:10.1016/j.matbio.2005.03.007
CAS
PubMed
Article
Google Scholar
Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3(8):566–574. doi:10.1038/nrm881
CAS
PubMed
Article
Google Scholar
Suzuki M, Satoh A, Ide H, Tamura K (2005) Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Dev Biol 286(1):361–375. doi:10.1016/j.ydbio.2005.08.021
CAS
PubMed
Article
Google Scholar
Young HE, Duplaa C, Romero-Ramos M, Chesselet MF, Vourc’h P, Yost MJ, Ericson K, Terracio L, Asahara T, Masuda H, Tamura-Ninomiya S, Detmer K, Bray RA, Steele TA, Hixson D, el-Kalay M, Tobin BW, Russ RD, Horst MN, Floyd JA, Henson NL, Hawkins KC, Groom J, Parikh A, Blake L, Bland LJ, Thompson AJ, Kirincich A, Moreau C, Hudson J, Bowyer FP 3rd, Lin TJ, Black AC Jr (2004) Adult reserve stem cells and their potential for tissue engineering. Cell Biochem Biophys 40(1):1–80. doi:10.1385/CBB:40:1:1
CAS
PubMed
Article
Google Scholar
Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65. doi:10.1038/nature08152
CAS
PubMed
Article
Google Scholar
Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248. doi:10.1002/dvdy.21890
CAS
PubMed
Article
Google Scholar
Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20(23):3232–3237. doi:10.1101/gad.1475106
CAS
PubMed
Article
Google Scholar
Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M, Greengard P, Meijer L (2004) Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47(4):935–946. doi:10.1021/jm031016d
CAS
PubMed
Article
Google Scholar
Lin G, Slack JM (2008) Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev Biol 316(2):323–335. doi:10.1016/j.ydbio.2008.01.032
CAS
PubMed
Article
Google Scholar
Beck CW, Christen B, Slack JM (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5(3):429–439
CAS
PubMed
Article
Google Scholar
Schnapp E, Kragl M, Rubin L, Tanaka EM (2005) Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132(14):3243–3253. doi:10.1242/dev.01906
CAS
PubMed
Article
Google Scholar
Ho DM, Whitman M (2008) TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 315(1):203–216. doi:10.1016/j.ydbio.2007.12.031
CAS
PubMed
Article
Google Scholar
McCusker C, Gardiner DM (2011) The axolotl model for regeneration and aging research: a mini-review. Gerontology 57(6):565–571. doi:10.1159/000323761
PubMed
Article
Google Scholar
Seifert AW, Monaghan JR, Voss SR, Maden M (2012) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS ONE 7(4):e32875. doi:10.1371/journal.pone.0032875
CAS
PubMed
Article
Google Scholar
Gardiner DM (2005) Ontogenetic decline of regenerative ability and the stimulation of human regeneration. Rejuvenation Res 8(3):141–153. doi:10.1089/rej.2005.8.141
CAS
PubMed
Article
Google Scholar
Bruckner-Tuderman L (2010) Systemic therapy for a genetic skin disease. N Engl J Med 363(7):680–682. doi:10.1056/NEJMe1004319
CAS
PubMed
Article
Google Scholar
Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. doi:10.1111/j.1524-475X.2009.00543.x
PubMed
Article
Google Scholar
Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O’Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W (2011) A fragment of secreted Hsp90alpha carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121(11):4348–4361. doi:10.1172/JCI46475
CAS
PubMed
Article
Google Scholar
Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4(1):19–24. doi:10.1016/S1357-4310(97)80541-2
CAS
PubMed
Article
Google Scholar
Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, Longaker MT (2001) Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108(2):423–429
CAS
PubMed
Article
Google Scholar
Lee TY, Chin GS, Kim WJ, Chau D, Gittes GK, Longaker MT (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 43(2):179–184
CAS
PubMed
Google Scholar
Phan TT, Lim IJ, Aalami O, Lorget F, Khoo A, Tan EK, Mukhopadhyay A, Longaker MT (2005) Smad3 signalling plays an important role in keloid pathogenesis via epithelial–mesenchymal interactions. J Pathol 207(2):232–242. doi:10.1002/path.1826
CAS
PubMed
Article
Google Scholar
Yu H, Bock O, Bayat A, Ferguson MW, Mrowietz U (2006) Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg 59(3):221–229
PubMed
Article
Google Scholar
Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X (2007) R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling. J Biol Chem 282(21):15903–15911. doi:10.1074/jbc.M701927200
CAS
PubMed
Article
Google Scholar
Chua AW, Ma D, Gan SU, Fu Z, Han HC, Song C, Sabapathy K, Phan TT (2011) The role of R-spondin2 in keratinocyte proliferation and epidermal thickening in keloid scarring. J Invest Dermatol 131(3):644–654. doi:10.1038/jid.2010.371
CAS
PubMed
Article
Google Scholar
Kim A, DiCarlo J, Cohen C, McCall C, Johnson D, McAlpine B, Quinn AG, McLaughlin ER, Arbiser JL (2001) Are keloids really “gli-loids”?: High-level expression of gli-1 oncogene in keloids. J Am Acad Dermatol 45(5):707–711. doi:10.1067/mjd.2001.117736
CAS
PubMed
Article
Google Scholar
Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870. doi:10.1152/physrev.00031.2002
CAS
PubMed
Google Scholar
Grose R, Werner S (2003) Wound healing studies in transgenic and knockout mice. A review. Methods Mol Med 78:191–216. doi:10.1385/1-59259-332-1:191
CAS
PubMed
Google Scholar
Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger LJ 3rd, Holtzin L, Schultz GS, Jurkiewicz MJ, Lynch JB (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321(2):76–79. doi:10.1056/NEJM198907133210203
CAS
PubMed
Article
Google Scholar
Mohan VK (2007) Recombinant human epidermal growth factor (REGEN-D 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract 78(3):405–411. doi:10.1016/j.diabres.2007.06.004
CAS
PubMed
Article
Google Scholar
Fu X, Shen Z, Chen Y, Xie J, Guo Z, Zhang M, Sheng Z (1998) Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet 352(9141):1661–1664. doi:10.1016/S0140-6736(98)01260-4
CAS
PubMed
Article
Google Scholar
Lin RY, Sullivan KM, Argenta PA, Meuli M, Lorenz HP, Adzick NS (1995) Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair. Ann Surg 222(2):146–154
CAS
PubMed
Article
Google Scholar
Ghahary A, Shen YJ, Scott PG, Gong Y, Tredget EE (1993) Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human post-burn hypertrophic scar tissues. J Lab Clin Med 122(4):465–473
CAS
PubMed
Google Scholar
Ferguson MW, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 359(1445):839–850. doi:10.1098/rstb.2004.1475
CAS
PubMed
Article
Google Scholar
Robson MC, Phillip LG, Cooper DM, Lyle WG, Robson LE, Odom L, Hill DP, Hanham AF, Ksander GA (1995) Safety and effect of transforming growth factor-beta(2) for treatment of venous stasis ulcers. Wound Repair Regen 3(2):157–167. doi:10.1046/j.1524-475X.1995.30207.x
CAS
PubMed
Article
Google Scholar
So K, McGrouther DA, Bush JA, Durani P, Taylor L, Skotny G, Mason T, Metcalfe A, O’Kane S, Ferguson MW (2011) Avotermin for scar improvement following scar revision surgery: a randomized, double-blind, within-patient, placebo-controlled, phase II clinical trial. Plast Reconstr Surg 128(1):163–172. doi:10.1097/PRS.0b013e318217429b
CAS
PubMed
Article
Google Scholar
LeGrand EK (1998) Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am J Surg 176 (2A Suppl):48S–54S
CAS
PubMed
Article
Google Scholar
Mandracchia VJ, Sanders SM, Frerichs JA (2001) The use of becaplermin (rhPDGF-BB) gel for chronic nonhealing ulcers. A retrospective analysis. Clin Podiatr Med Surg 18 (1):189–209, viii
CAS
PubMed
Google Scholar
Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH (1999) Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 7(5):335–346
CAS
PubMed
Article
Google Scholar
Ono I, Akasaka Y, Kikuchi R, Sakemoto A, Kamiya T, Yamashita T, Jimbow K (2007) Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair Regen 15(5):617–623. doi:10.1111/j.1524-475X.2007.00293.x
PubMed
Article
Google Scholar
Berlanga-Acosta J, Gavilondo-Cowley J, Lopez-Saura P, Gonzalez-Lopez T, Castro-Santana MD, Lopez-Mola E, Guillen-Nieto G, Herrera-Martinez L (2009) Epidermal growth factor in clinical practice – a review of its biological actions, clinical indications and safety implications. Int Wound J 6(5):331–346. doi:10.1111/j.1742-481X.2009.00622.x
PubMed
Article
Google Scholar
Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Muller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3 (100):100ra189. doi:10.1126/scitranslmed.3002614
Article
CAS
Google Scholar
Wadman M (2005) Scar prevention: the healing touch. Nature 436(7054):1079–1080. doi:10.1038/4361079a
CAS
PubMed
Article
Google Scholar
Vrijman C, van Drooge AM, Limpens J, Bos JD, van der Veen JP, Spuls PI, Wolkerstorfer A (2011) Laser and intense pulsed light therapy for the treatment of hypertrophic scars: a systematic review. Br J Dermatol 165(5):934–942. doi:10.1111/j.1365-2133.2011.10492.x
CAS
PubMed
Article
Google Scholar
Alster TS, West TB (1997) Treatment of scars: a review. Ann Plast Surg 39(4):418–432
CAS
PubMed
Article
Google Scholar
Solon LR, Aronson R, Gould G (1961) Physiological implications of laser beams. Science 134:1506–1508
CAS
PubMed
Article
Google Scholar
Capon A, Mordon S (2003) Can thermal lasers promote skin wound healing? Am J Clin Dermatol 4(1):1–12
PubMed
Article
Google Scholar
Cooper L, Johnson C, Burslem F, Martin P (2005) Wound healing and inflammation genes revealed by array analysis of ‘macrophageless’ PU.1 null mice. Genome Biol 6(1):R5. doi:10.1186/gb-2004-6-1-r5
PubMed
Article
Google Scholar
Colwell AS, Longaker MT, Peter Lorenz H (2008) Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound Repair Regen 16(3):450–459. doi:10.1111/j.1524-475X.2008.00383.x
PubMed
Article
Google Scholar
Roy S, Sen CK (2012) miRNA in wound inflammation and angiogenesis. Microcirculation 19(3):224–232. doi:10.1111/j.1549-8719.2011.00156.x
CAS
PubMed
Article
Google Scholar
Richardson RL, Wright JT, Kim JW, Hausman GJ (1992) Expression of transforming growth factor-beta (TGF-beta 1) and insulin-like growth factor II (IGF-II) messenger RNA in the developing subcutaneous tissue (SQ) of the fetal pig. Growth Dev Aging 56(3):149–157
CAS
PubMed
Google Scholar
Porras-Reyes BH, Ksander G, Weeks PM (1993) Occurrence and localization of transforming growth factor-beta (TGF-beta 1, beta 2) during rabbit skin development. Connect Tissue Res 29(3):203–212
CAS
PubMed
Article
Google Scholar
Olivera-Martinez I, Thelu J, Teillet MA, Dhouailly D (2001) Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 100(2):233–244
CAS
PubMed
Article
Google Scholar