Skip to main content
Log in

CCN2: a bona fide target for anti-fibrotic drug intervention

  • Bits and Bytes
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

CCN2 (formerly known as connective tissue growth factor) was identified by several different laboratories approximately 20 years ago. Almost since its identification as a factor induced in normal fibroblasts by transforming growth factor β and overexpressed in fibrotic disease, CCN2 has been hypothesized to be not only a marker but also a central mediator of fibrosis in vivo. Finally, in vivo data are emerging to validate this key hypothesis. For example, a neutralizing anti-CCN2 antibody was found to attenuate fibrogenesis in three separate animal models (Wang et al. in Fibrogenesis Tissue Repair 4:1–4, 2011). This commentary addresses recent data indicating that CCN2 appears to represent a key central mediator of fibrosis and a good target for anti-fibrotic drug intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abraham DJ, Shiwen X, Black CM, Sa S, Xu Y, Leask A (2000) Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem 275:15220–15225

    Article  PubMed  CAS  Google Scholar 

  • Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Brigstock DR (2009) Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): from pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J Cell Commun Signal 3:5–18

    Google Scholar 

  • Brigstock DR (2010) Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal 4:1–4

    Google Scholar 

  • Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA (1997) Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 272:20275–20282

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Lau LF (2010) Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J Cell Commun Signal 4:63–69

    Article  PubMed  CAS  Google Scholar 

  • Franklin TJ (1997) Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 29:79–89

    Article  PubMed  CAS  Google Scholar 

  • Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  PubMed  CAS  Google Scholar 

  • Gressner OA, Gressner AM (2008) Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int 28:1065–1079

    Article  PubMed  CAS  Google Scholar 

  • Grotendorst GR, Okochi H, Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7:469–480

    PubMed  CAS  Google Scholar 

  • He Z, Way KJ, Arikawa E, Chou E, Opland DM, Clermont A, Isshiki K, Ma RC, Scott JA, Schoen FJ, Feener EP, King GL (2005) Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium. J Biol Chem 280:15719–15726

    Article  PubMed  CAS  Google Scholar 

  • Hinz B (2009) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11:120–126

    Article  PubMed  CAS  Google Scholar 

  • Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2:78

    Article  PubMed  Google Scholar 

  • Igarashi A, Okochi H, Bradham DM, Grotendorst GR (1993) Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 4:637–645

    PubMed  CAS  Google Scholar 

  • Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733

    Article  PubMed  CAS  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  PubMed  CAS  Google Scholar 

  • Krieg T, Abraham D, Lafyatis R (2007) Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast–epithelial cell interactions. Arthritis Res Ther 9(Suppl 2):S4

    Article  PubMed  Google Scholar 

  • Kulkarni AA, Thatcher TH, Olsen KC, Maggirwar SB, Phipps RP, Sime PJ (2011) PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLoS ONE 6:e15909

    Article  PubMed  CAS  Google Scholar 

  • Leask A (2010a) Yin and Yang Part Deux: CCN5 inhibits the pro-fibrotic effects of CCN2. J Cell Commun Signal 4:155–156

    Google Scholar 

  • Leask A (2010b) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Leask A, Parapuram SK, Shi-Wen X, Abraham DJ (2009) Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal 3:89–94

    Article  PubMed  Google Scholar 

  • Liu S, Kapoor M, Shi-wen X, Kennedy L, Denton CP, Glogauer M, Abraham DJ, Leask A (2008) Role of Rac1 in a bleomycin-induced scleroderma model using fibroblast-specific Rac1-knockout mice. Arthritis Rheum 58:2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Kapoor M, Denton CP, Abraham DJ, Leask A (2009) Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum 60:2817–2821

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Taghavi R, Leask A (2010) Connective tissue growth factor is induced in bleomycin-induced skin scleroderma. J Cell Commun Signal 4:25–30

    Article  PubMed  Google Scholar 

  • Liu S, Shi-wen X, Abraham DJ, Leask A (2011) CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum 63:239–246

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol 181:153–159

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Hinchcliff M, Wu M, Warner-Blankenship M, Lyons KM, Varga J (2008) Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-beta responsiveness. Exp Cell Res 314:1094–1104

    Article  PubMed  CAS  Google Scholar 

  • Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–92

    Article  PubMed  CAS  Google Scholar 

  • Pinzani M (2008) Welcome to fibrogenesis & tissue repair. Fibrogenesis Tissue Repair 1:1

    Article  PubMed  Google Scholar 

  • Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155

    Article  PubMed  CAS  Google Scholar 

  • Shi-wen X, Stanton LA, Kennedy L, Pala D, Chen Y, Howat SL, Renzoni EA, Carter DE, Bou-Gharios G, Stratton RJ, Pearson JD, Beier F, Lyons KM, Black CM, Abraham DJ, Leask A (2006) CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem 281:10715–10726

    Article  PubMed  Google Scholar 

  • Shi-wen X, Kennedy L, Renzoni EA, Bou-Gharios G, du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum 56:4189–4194

    Article  PubMed  Google Scholar 

  • Takigawa M, Tajima K, Pan HO, Enomoto M, Kinoshita A, Suzuki F, Takano Y, Mori Y (1989) Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes. Cancer Res 49:3996–4002

    PubMed  CAS  Google Scholar 

  • Twigg SM (2010) Mastering a mediator: blockade of CCN-2 shows early promise in human diabetic kidney disease. J Cell Commun Signal 4:189–196

    Google Scholar 

  • Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D (2011) Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4(1):4

    Article  PubMed  CAS  Google Scholar 

  • Xu SW, Liu S, Eastwood M, Sonnylal S, Denton CP, Abraham DJ, Leask A (2009) Rac inhibition reverses the phenotype of fibrotic fibroblasts. PLoS ONE 4:e7438

    Article  PubMed  Google Scholar 

  • Yoon PO, Lee MA, Cha H, Jeong MH, Kim J, Jang SP, Choi BY, Jeong D, Yang DK, Hajjar RJ, Park WJ (2010) The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 49:294–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Leask.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leask, A. CCN2: a bona fide target for anti-fibrotic drug intervention. J. Cell Commun. Signal. 5, 131–133 (2011). https://doi.org/10.1007/s12079-011-0125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-011-0125-3

Keywords

Navigation