Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Dark matter and leptogenesis linked by classical scale invariance
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A testable hidden-sector model for Dark Matter and neutrino masses

11 February 2020

Julia Gehrlein & Mathias Pierre

Dark sector as origin of light lepton mass and its phenomenology

11 May 2022

Cheng-Wei Chiang, Ryomei Obuchi & Kei Yagyu

Neutrino mass, leptogenesis, and dark matter from the dark sector with U(1)D

23 March 2018

Wei-Min Yang

The dispirited case of gauged U(1)B − L dark matter

29 August 2018

Miguel Escudero, Samuel J. Witte & Nuria Rius

Neutrino mass and dark matter from an approximate B − L symmetry

20 May 2020

Duong Van Loi, Phung Van Dong & Dang Van Soa

Leptogenesis from oscillations and dark matter

09 July 2019

Andrea Caputo, Pilar Hernandez & Nuria Rius

Matter and dark matter asymmetry from a composite Higgs model

26 April 2021

M. Ahmadvand

Connecting light dirac neutrinos to a multi-component dark matter scenario in gauged $$B-L$$B-L model

19 June 2020

Dibyendu Nanda & Debasish Borah

Unification of the standard model and dark matter sectors in [SU(5) × U(1)]4

31 July 2019

Ayuki Kamada, Masaki Yamada & Tsutomu T. Yanagida

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 07 November 2016

Dark matter and leptogenesis linked by classical scale invariance

  • Valentin V. Khoze1 &
  • Alexis D. Plascencia1 

Journal of High Energy Physics volume 2016, Article number: 25 (2016) Cite this article

  • 200 Accesses

  • 33 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  2. W.A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics, Ontake Mountain, Japan, August 27-September 2 1995 [FERMILAB-CONF-95-391] [C95-08-27.3] [INSPIRE].

  3. R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

  4. W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1) s model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

  5. C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  6. V.V. Khoze and G. Ro, Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  8. C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  9. V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].

    ADS  Google Scholar 

  11. E.K. Akhmedov, V.A. Rubakov and A.Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  12. M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].

    ADS  Google Scholar 

  15. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  16. S. Iso, N. Okada and Y. Orikasa, Classically conformal B − L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Holthausen, M. Lindner and M.A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].

    ADS  Google Scholar 

  18. L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. J.S. Lee and A. Pilaftsis, Radiative Corrections to Scalar Masses and Mixing in a Scale Invariant Two Higgs Doublet Model, Phys. Rev. D 86 (2012) 035004 [arXiv:1201.4891] [INSPIRE].

    ADS  Google Scholar 

  20. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

    ADS  Google Scholar 

  24. C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. Abel and A. Mariotti, Novel Higgs Potentials from Gauge Mediation of Exact Scale Breaking, Phys. Rev. D 89 (2014) 125018 [arXiv:1312.5335] [INSPIRE].

    ADS  Google Scholar 

  26. K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, Phys. Lett. B 738 (2014) 191 [arXiv:1404.6268] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 01 (2015) 143 [arXiv:1409.5776] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.D. Plascencia, Classical scale invariance in the inert doublet model, JHEP 09 (2015) 026 [arXiv:1507.04996] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. K. Ghorbani and H. Ghorbani, Scalar Dark Matter in Scale Invariant Standard Model, JHEP 04 (2016) 024 [arXiv:1511.08432] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Ahriche, A. Manning, K.L. McDonald and S. Nasri, Scale-Invariant Models with One-Loop Neutrino Mass and Dark Matter Candidates, Phys. Rev. D 94 (2016) 053005 [arXiv:1604.05995] [INSPIRE].

    Google Scholar 

  31. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Gross, O. Lebedev and Y. Mambrini, Non-Abelian gauge fields as dark matter, JHEP 08 (2015) 158 [arXiv:1505.07480] [INSPIRE].

    Article  Google Scholar 

  33. S. Di Chiara and K. Tuominen, A minimal model for SU(N ) vector dark matter, JHEP 11 (2015) 188 [arXiv:1506.03285] [INSPIRE].

    Article  ADS  Google Scholar 

  34. V.V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, JHEP 10 (2014) 61 [arXiv:1406.2291] [INSPIRE].

    Article  ADS  Google Scholar 

  35. E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].

    ADS  Google Scholar 

  36. S.P. Martin, Two loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [INSPIRE].

  37. V. Martín Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in the \( hh\to b\overline{b}\ W\ W\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} \) decay channel, JHEP 08 (2015) 004 [arXiv:1501.03799] [INSPIRE].

    Google Scholar 

  38. T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  41. C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the Galactic Centre excess, Phys. Rev. D 90 (2014) 023531 [arXiv:1404.4977] [INSPIRE].

    ADS  Google Scholar 

  42. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].

  43. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  44. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  45. D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].

  46. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

    ADS  Google Scholar 

  47. S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].

    Article  ADS  Google Scholar 

  48. XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].

  49. B. Shuve and I. Yavin, Baryogenesis through Neutrino Oscillations: A Unified Perspective, Phys. Rev. D 89 (2014) 075014 [arXiv:1401.2459] [INSPIRE].

    ADS  Google Scholar 

  50. D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Arina, T. Hambye, A. Ibarra and C. Weniger, Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay, JCAP 03 (2010) 024 [arXiv:0912.4496] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom

    Valentin V. Khoze & Alexis D. Plascencia

Authors
  1. Valentin V. Khoze
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Valentin V. Khoze.

Additional information

ArXiv ePrint: 1605.06834

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoze, V.V., Plascencia, A.D. Dark matter and leptogenesis linked by classical scale invariance. J. High Energ. Phys. 2016, 25 (2016). https://doi.org/10.1007/JHEP11(2016)025

Download citation

  • Received: 02 June 2016

  • Revised: 01 October 2016

  • Accepted: 19 October 2016

  • Published: 07 November 2016

  • DOI: https://doi.org/10.1007/JHEP11(2016)025

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Spontaneous Symmetry Breaking
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.