Skip to main content
Log in

Running couplings with a vanishing scale anomaly

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Running couplings can be understood as arising from the spontaneous breaking of an exact scale invariance in appropriate effective theories with no dilatation anomaly. Any ordinary quantum field theory, even if it has massive fields, can be embedded into a theory with spontaneously broken exact scale invariance in such a way that the ordinary running is recovered in the appropriate limit, as long as the potential has a flat direction. These scale-invariant theories, however, do not necessarily solve the cosmological constant or naturalness problems, which become manifest in the need to fine-tune dimensionless parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann and F. Low, Quantum electrodynamics at small distances, Phys. Rev. 95 (1954) 1300 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    Article  ADS  Google Scholar 

  3. H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Kinoshita, The Fine structure constant, Rept. Prog. Phys. 59 (1996) 1459 [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Pich, Review of α s determinations, PoS (Confinement X) 022 [arXiv:1303.2262] [INSPIRE].

  6. I. Antoniadis and N. Tsamis, On the Cosmological Constant Problem, Phys. Lett. B 144 (1984) 55 [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

    Article  ADS  Google Scholar 

  9. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391.

  10. R. Hempfling, The next-to-minimal Coleman-Weinberg model, Physics Letters B 379 (1996) 153 [hep-ph/9604278].

    Article  ADS  Google Scholar 

  11. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. W.-F. Chang, J.N. Ng and J.M. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].

    ADS  Google Scholar 

  13. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  14. S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scalein view of the hierarchy problem, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].

  16. C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].

    ADS  Google Scholar 

  17. C. Englert, J. Jaeckel, V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  19. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  20. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  21. C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2 (1970) 1541 [INSPIRE].

    ADS  Google Scholar 

  22. K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math. Phys. 18 (1970) 227 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  24. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  25. B. Grinstein and P. Uttayarat, A Very Light Dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. I. Antoniadis and N. Tsamis, Weyl Invariant Gravity and the Cosmological Constant, SLAC-PUB-3297.

  27. F. Englert, C. Truffin and R. Gastmans, Conformal Invariance in Quantum Gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].

    Article  ADS  Google Scholar 

  28. E. Fradkin and G. Vilkovisky, Conformal Off Mass Shell Extension and Elimination of Conformal Anomalies in Quantum Gravity, Phys. Lett. B 73 (1978) 209 [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Tsamis and R. Woodard, No New Physics in Conformal ScalarMetric Theory, Annals Phys. 168 (1986) 457 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Codello, G. D’Odorico, C. Pagani and R. Percacci, The Renormalization Group and Weyl-invariance, Class. Quant. Grav. 30 (2013) 115015 [arXiv:1210.3284] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Shaposhnikov and F. Tkachov, Quantum scale-invariant models as effective field theories, arXiv:0905.4857 [INSPIRE].

  32. P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Akyeampong and R. Delbourgo, Anomalies via dimensional regularization, Nuovo Cim. A 19 (1974) 219 [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.C. Collins, Renormalization, Cambridge University Press, 1984.

  35. R. Armillis, A. Monin and M. Shaposhnikov, Spontaneously Broken Conformal Symmetry: Dealing with the Trace Anomaly, JHEP 10 (2013) 030 [arXiv:1302.5619] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. F. Gretsch and A. Monin, Dilaton: Saving Conformal Symmetry, arXiv:1308.3863 [INSPIRE].

  37. Z. Komargodski, The Constraints of Conformal Symmetry on RG Flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the Asymptotics of 4D Quantum Field Theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J.-F. Fortin, B. Grinstein and A. Stergiou, Limit Cycles in Four Dimensions, JHEP 12 (2012) 112 [arXiv:1206.2921] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Tamarit.

Additional information

ArXiv ePrint: 1309.0913

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamarit, C. Running couplings with a vanishing scale anomaly. J. High Energ. Phys. 2013, 98 (2013). https://doi.org/10.1007/JHEP12(2013)098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)098

Keywords

Navigation