Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
XCone: N-jettiness as an exclusive cone jet algorithm
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Energy flow polynomials: a complete linear basis for jet substructure

04 April 2018

Patrick T. Komiske, Eric M. Metodiev & Jesse Thaler

Calculating the angle between jet axes

30 April 2020

Pedro Cal, Duff Neill, … Wouter J. Waalewijn

An update on the LHC monojet excess

21 March 2018

Pouya Asadi, Matthew R. Buckley, … David Shih

The jet shape at NLL′

23 May 2019

Pedro Cal, Felix Ringer & Wouter J. Waalewijn

Spectral clustering for jet physics

21 February 2022

Giorgio Cerro, Srinandan Dasmahapatra, … Claire H. Shepherd-Themistocleous

Practical jet flavour through NNLO

23 July 2022

Simone Caletti, Andrew J. Larkoski, … Daniel Reichelt

I-jettiness with jet axis at O(αs) in deep inelastic scattering

20 June 2022

Zexuan Chu, Yunlu Wang, … Daekyoung Kang

One-loop jet functions by geometric subtraction

19 October 2020

Avanish Basdew-Sharma, Franz Herzog, … Wouter J. Waalewijn

Multi-jet merging with TMD parton branching

07 September 2022

A. Bermudez Martinez, F. Hautmann & M. L. Mangano

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 11 November 2015

XCone: N-jettiness as an exclusive cone jet algorithm

  • Iain W. Stewart1,
  • Frank J. Tackmann2,
  • Jesse Thaler1,
  • Christopher K. Vermilion3 &
  • …
  • Thomas F. Wilkason1 

Journal of High Energy Physics volume 2015, Article number: 72 (2015) Cite this article

  • 749 Accesses

  • 21 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We introduce a new jet algorithm called XCone, for eXclusive Cone, which is based on minimizing the event shape N -jettiness. Because N -jettiness partitions every event into N jet regions and a beam region, XCone is an exclusive jet algorithm that always returns a fixed number of jets. We use a new “conical geometric” measure for which well-separated jets are bounded by circles of radius R in the rapidity-azimuth plane, while overlapping jet regions automatically form nearest-neighbor “clover jets”. This avoids the split/merge criteria needed in inclusive cone algorithms. A key feature of XCone is that it smoothly transitions between the resolved regime where the N signal jets of interest are well separated and the boosted regime where they overlap. The returned value of N -jettiness also provides a quality criterion of how N -jet-like the event looks. We also discuss the N -jettiness factorization theorems that occur for various jet measures, which can be used to compute the associated exclusive N -jet cross sections. In a companion paper [1], the physics potential of XCone is demonstrated using the examples of dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Thaler and T.F. Wilkason, Resolving boosted jets with XCone, arXiv:1508.01518 [INSPIRE].

  2. S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant k t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys. J. C 75 (2015) 409 [arXiv:1504.00679] [INSPIRE].

    Article  ADS  Google Scholar 

  15. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  16. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N-jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

    ADS  Google Scholar 

  17. J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].

    ADS  Google Scholar 

  18. C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

    ADS  Google Scholar 

  19. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].

    ADS  Google Scholar 

  20. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Dissecting soft radiation with factorization, Phys. Rev. Lett. 114 (2015) 092001 [arXiv:1405.6722] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Kang, C. Lee and I.W. Stewart, Using 1-jettiness to measure 2 jets in DIS 3 ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].

    ADS  Google Scholar 

  22. Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].

    ADS  Google Scholar 

  23. Z.-B. Kang, S. Mantry and J.-W. Qiu, N-jettiness as a probe of nuclear dynamics, Phys. Rev. D 86 (2012) 114011 [arXiv:1204.5469] [INSPIRE].

    ADS  Google Scholar 

  24. Z.-B. Kang, X. Liu, S. Mantry and J.-W. Qiu, Probing nuclear dynamics in jet production with a global event shape, Phys. Rev. D 88 (2013) 074020 [arXiv:1303.3063] [INSPIRE].

    ADS  Google Scholar 

  25. D. Kang, C. Lee and I.W. Stewart, Analytic calculation of 1-jettiness in DIS at \( \mathcal{O} \)(α s ), JHEP 11 (2014) 132 [arXiv:1407.6706] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Z.-B. Kang, X. Liu, S. Mantry and J. Qiu, The 1-jettiness DIS spectrum: factorization, resummation and jet algorithm dependence, arXiv:1503.04210 [INSPIRE].

  27. A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

    Article  Google Scholar 

  31. G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].

    Article  ADS  Google Scholar 

  32. G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [INSPIRE].

  33. S.D. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C 010630 (2001) 513 [hep-ph/0111434] [INSPIRE].

    Google Scholar 

  34. G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.F. Berger et al., Snowmass 2001: jet energy flow project, eConf C 010630 (2001) P512 [hep-ph/0202207] [INSPIRE].

    Google Scholar 

  36. L. Angelini et al., Jet analysis by deterministic annealing, Phys. Lett. B 545 (2002) 315 [hep-ph/0207032] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Angelini, G. Nardulli, L. Nitti, M. Pellicoro, D. Perrino and S. Stramaglia, Deterministic annealing as a jet clustering algorithm in hadronic collisions, Phys. Lett. B 601 (2004) 56 [hep-ph/0407214] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D. Yu. Grigoriev, E. Jankowski and F.V. Tkachov, Towards a standard jet definition, Phys. Rev. Lett. 91 (2003) 061801 [hep-ph/0301185] [INSPIRE].

  39. D. Yu. Grigoriev, E. Jankowski and F.V. Tkachov, Optimal jet finder, Comput. Phys. Commun. 155 (2003) 42 [hep-ph/0301226] [INSPIRE].

  40. S. Chekanov, A new jet algorithm based on the k-means clustering for the reconstruction of heavy states from jets, Eur. Phys. J. C 47 (2006) 611 [hep-ph/0512027] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Y.-S. Lai and B.A. Cole, Jet reconstruction in hadronic collisions by gaussian filtering, arXiv:0806.1499 [INSPIRE].

  42. I. Volobouev, FFTJet: a package for multiresolution particle jet reconstruction in the Fourier domain, arXiv:0907.0270 [INSPIRE].

  43. L. Mackey, B. Nachman, A. Schwartzman and C. Stansbury, Fuzzy jets, arXiv:1509.02216 [INSPIRE].

  44. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.P. Korchemsky and G.F. Sterman, Infrared factorization in inclusive B meson decays, Phys. Lett. B 340 (1994) 96 [hep-ph/9407344] [INSPIRE].

    Article  ADS  Google Scholar 

  47. H. Georgi, A simple alternative to jet-clustering algorithms, arXiv:1408.1161 [INSPIRE].

  48. S.-F. Ge, The Georgi algorithms of jet clustering, JHEP 05 (2015) 066 [arXiv:1408.3823] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Y. Bai, Z. Han and R. Lu, JET : a global jet finding algorithm, JHEP 03 (2015) 102 [arXiv:1411.3705] [INSPIRE].

    Article  Google Scholar 

  50. J. Thaler, Jet maximization, axis minimization and stable cone finding, Phys. Rev. D 92 (2015) 074001 [arXiv:1506.07876] [INSPIRE].

    ADS  Google Scholar 

  51. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Georgi and M. Machacek, A simple QCD prediction of jet structure in e + e − annihilation, Phys. Rev. Lett. 39 (1977) 1237 [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Brandt and H. Dahmen, Axes and scalar measures of two-jet and three-jet events, Z. Phys. C 1 (1979) 61.

    ADS  Google Scholar 

  54. S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theor. 28 (1982) 129.

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Ding, D. Zhou, X. He and H. Zha, R1-pca: rotational invariant ℓ 1 -norm principal component analysis for robust subspace factorization, in proceedings of the 23rd international conference on Machine learning (ICML06), June 25-29, New York, U.S.A. (2006).

  56. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  57. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  59. M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s}=300 \) GeV, DESY-THESIS-2000-049 (2000).

  60. A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].

    ADS  Google Scholar 

  61. D. Bertolini, T. Chan and J. Thaler, Jet observables without jet algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].

    Article  ADS  Google Scholar 

  62. G. Salam, E ∞ t scheme, unpublished.

  63. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Fastjet contrib, http://fastjet.hepforge.org/contrib/.

  65. G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].

    Article  ADS  Google Scholar 

  66. R. Boughezal, X. Liu and F. Petriello, N -jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].

    ADS  Google Scholar 

  67. G. Parisi, Super inclusive cross-sections, Phys. Lett. B 74 (1978) 65 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. J.F. Donoghue, F.E. Low and S.-Y. Pi, Tensor analysis of hadronic jets in quantum chromodynamics, Phys. Rev. D 20 (1979) 2759 [INSPIRE].

    ADS  Google Scholar 

  69. S. Catani and B.R. Webber, Resummed C parameter distribution in e + e − annihilation, Phys. Lett. B 427 (1998) 377 [hep-ph/9801350] [INSPIRE].

    Article  ADS  Google Scholar 

  70. E. Gardi and L. Magnea, The C parameter distribution in e + e − annihilation, JHEP 08 (2003) 030 [hep-ph/0306094] [INSPIRE].

    Article  ADS  Google Scholar 

  71. G.P. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].

    ADS  Google Scholar 

  73. S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-dependent jet vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].

    ADS  Google Scholar 

  74. S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e − annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  75. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. J.M. Butterworth, J.P. Couchman, B.E. Cox and B.M. Waugh, KtJet: a C++ implementation of the K-perpendicular clustering algorithm, Comput. Phys. Commun. 153 (2003) 85 [hep-ph/0210022] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Boronat, J. Fuster, I. Garcia, E. Ros and M. Vos, A robust jet reconstruction algorithm for high-energy lepton colliders, Phys. Lett. B 750 (2015) 95 [arXiv:1404.4294] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

    Article  ADS  Google Scholar 

  81. J.R. Gaunt, Glauber gluons and multiple parton interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].

    Article  Google Scholar 

  83. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X(sγ) in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  84. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  85. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    Article  ADS  Google Scholar 

  86. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  87. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  88. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

    ADS  Google Scholar 

  89. A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].

    Article  ADS  Google Scholar 

  90. A. Jain, M. Procura and W.J. Waalewijn, Fully-unintegrated parton distribution and fragmentation functions at perturbative k T , JHEP 04 (2012) 132 [arXiv:1110.0839] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  92. M. Procura, W.J. Waalewijn and L. Zeune, Resummation of double-differential cross sections and fully-unintegrated parton distribution functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  93. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  95. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. S. Fleming, A.K. Leibovich and T. Mehen, Resummation of large endpoint corrections to color-octet J/ψ photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [INSPIRE].

    ADS  Google Scholar 

  97. T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

    Article  ADS  Google Scholar 

  98. T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation properties of jet vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  100. T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  101. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  102. T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].

    Article  ADS  Google Scholar 

  103. I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at N N LL ′ + N N LO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].

    ADS  Google Scholar 

  104. T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust, JHEP 06 (2015) 071 [arXiv:1502.04136] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, U.S.A.

    Iain W. Stewart, Jesse Thaler & Thomas F. Wilkason

  2. Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607, Hamburg, Germany

    Frank J. Tackmann

  3. Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, U.S.A.

    Christopher K. Vermilion

Authors
  1. Iain W. Stewart
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Frank J. Tackmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jesse Thaler
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Christopher K. Vermilion
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Thomas F. Wilkason
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jesse Thaler.

Additional information

ArXiv ePrint: 1508.01516

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stewart, I.W., Tackmann, F.J., Thaler, J. et al. XCone: N-jettiness as an exclusive cone jet algorithm. J. High Energ. Phys. 2015, 72 (2015). https://doi.org/10.1007/JHEP11(2015)072

Download citation

  • Received: 11 September 2015

  • Accepted: 20 October 2015

  • Published: 11 November 2015

  • DOI: https://doi.org/10.1007/JHEP11(2015)072

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
  • QCD Phenomenology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.