Skip to main content
Log in

Fully-unintegrated parton distribution and fragmentation functions at perturbative k

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We define and study the properties of generalized beam functions (BFs) and fragmenting jet functions (FJFs), which are fully-unintegrated parton distribution functions (PDFs) and fragmentation functions (FFs) for perturbative k . We calculate at one loop the coefficients for matching them onto standard PDFs and FFs, correcting previous results for the BFs in the literature. Technical subtleties when measuring transverse momentum in dimensional regularization are clarified, and this enables us to renormalize in momentum space. Generalized BFs describe the distribution in the full four-momentum k μ of a colliding parton taken out of an initial-state hadron, and therefore characterize the collinear initial-state radiation. We illustrate their importance through a factorization theorem for pp → ℓ+ + 0 jets, where the transverse momentum of the lepton pair is measured. Generalized FJFs are relevant for the analysis of semi-inclusive processes where the full momentum of a hadron, fragmenting from a jet with constrained invariant mass, is measured. Their significance is shown for the example of e + e  → dijet + h, where the perpendicular momentum of the fragmenting hadron with respect to the thrust axis is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Collins and H. Jung, Need for fully unintegrated parton densities, hep-ph/0508280 [INSPIRE].

  2. G. Watt, A. Martin and M. Ryskin, Unintegrated parton distributions and electroweak boson production at hadron colliders, Phys. Rev. D 70 (2004) 014012 [Erratum ibid. D 70 (2004) 079902] [hep-ph/0309096] [INSPIRE].

    ADS  Google Scholar 

  3. G. Watt, A. Martin and M. Ryskin, Unintegrated parton distributions and inclusive jet production at HERA, Eur. Phys. J. C 31 (2003) 73 [hep-ph/0306169] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.C. Collins and X. Zu, Initial state parton showers beyond leading order, JHEP 03 (2005) 059 [hep-ph/0411332] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Collins, T. Rogers and A. Stasto, Fully unintegrated parton correlation functions and factorization in lowest-order hard scattering, Phys. Rev. D 77 (2008) 085009 [arXiv:0708.2833] [INSPIRE].

    ADS  Google Scholar 

  6. T.C. Rogers, Next-to-leading order hard scattering using fully unintegrated parton distribution functions, Phys. Rev. D 78 (2008) 074018 [arXiv:0807.2430] [INSPIRE].

    ADS  Google Scholar 

  7. M. Procura and W.J. Waalewijn, Fragmentation in jets: cone and threshold effects, arXiv:1111.6605 [INSPIRE].

  8. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  9. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N-jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

    ADS  Google Scholar 

  11. S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  12. S. Mantry and F. Petriello, Transverse momentum distributions from effective field theory with numerical results, Phys. Rev. D 83 (2011) 053007 [arXiv:1007.3773] [INSPIRE].

    ADS  Google Scholar 

  13. S. Fleming, A.K. Leibovich and T. Mehen, Resummation of large endpoint corrections to color-octet J/ψ photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [INSPIRE].

    ADS  Google Scholar 

  14. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].

    Article  Google Scholar 

  17. I. Cherednikov and N. Stefanis, Renormalization, Wilson lines and transverse-momentum dependent parton distribution functions, Phys. Rev. D 77 (2008) 094001 [arXiv:0710.1955] [INSPIRE].

    ADS  Google Scholar 

  18. F. Hautmann, Endpoint singularities in unintegrated parton distributions, Phys. Lett. B 655 (2007)26 [hep-ph/0702196] [INSPIRE].

    ADS  Google Scholar 

  19. F. Hautmann and D.E. Soper, Parton distribution function for quarks in an s-channel approach, Phys. Rev. D 75 (2007) 074020 [hep-ph/0702077] [INSPIRE].

    ADS  Google Scholar 

  20. S. Meissner, A. Metz and M. Schlegel, Generalized transverse momentum dependent parton distributions of the nucleon, arXiv:0807.1154 [INSPIRE].

  21. B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].

    ADS  Google Scholar 

  22. A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in a diquark spectator model, Phys. Rev. D 78 (2008) 074010 [arXiv:0807.0323] [INSPIRE].

    ADS  Google Scholar 

  23. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory, arXiv:1202.0814 [INSPIRE].

  25. J.C. Collins, What exactly is a parton density?, Acta Phys. Polon. B 34 (2003) 3103 [hep-ph/0304122] [INSPIRE].

    ADS  Google Scholar 

  26. J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194 (1982)445 [INSPIRE].

    Article  ADS  Google Scholar 

  27. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Procura and I.W. Stewart, Quark fragmentation within an identified jet, Phys. Rev. D 81 (2010)074009 [Erratum ibid. D 83 (2011) 039902] [arXiv:0911.4980] [INSPIRE].

    ADS  Google Scholar 

  29. A. Jain, M. Procura and W.J. Waalewijn, Parton fragmentation within an identified jet at NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].

    Article  ADS  Google Scholar 

  30. X. Liu, SCET approach to top quark decay, Phys. Lett. B 699 (2011) 87 [arXiv:1011.3872] [INSPIRE].

    ADS  Google Scholar 

  31. Belle collaboration, R. Seidl et al., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e + e annihilation at \( \sqrt {s} = 10.58{ }GeV \), Phys. Rev. D 78 (2008) 032011 [arXiv:0805.2975] [INSPIRE].

    ADS  Google Scholar 

  32. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X sγ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  33. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  34. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001)134 [hep-ph/0107001] [INSPIRE].

    ADS  Google Scholar 

  35. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  36. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

    ADS  Google Scholar 

  37. X.-D. Ji and F. Yuan, Parton distributions in light cone gauge: where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].

    ADS  Google Scholar 

  38. A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Idilbi and A. Majumder, Extending soft-collinear-effective-theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].

    ADS  Google Scholar 

  40. A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].

    ADS  Google Scholar 

  41. M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T-Wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].

    ADS  Google Scholar 

  42. J.C. Collins and F. Hautmann, Infrared divergences and nonlightlike eikonal lines in Sudakov processes, Phys. Lett. B 472 (2000) 129 [hep-ph/9908467] [INSPIRE].

    ADS  Google Scholar 

  43. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

  44. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010)040 [arXiv:0911.0681] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Chay and C. Kim, Collinear effective theory at subleading order and its application to heavy-light currents, Phys. Rev. D 65 (2002) 114016 [hep-ph/0201197] [INSPIRE].

    ADS  Google Scholar 

  46. A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

    ADS  Google Scholar 

  47. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  48. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].

    Google Scholar 

  49. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  50. G.T. Bodwin, S.J. Brodsky and G.P. Lepage, Initial state interactions and the Drell-Yan process, Phys. Rev. Lett. 47 (1981) 1799 [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988)833 [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Krohn, L. Randall and L.-T. Wang, On the feasibility and utility of ISR tagging, arXiv:1101.0810 [INSPIRE].

  53. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  54. J.C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396 (1993) 161 [hep-ph/9208213] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J.-Y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Using SCET to calculate electroweak corrections in gauge boson production, PoS(EFT09)009 [arXiv:0905.1141] [INSPIRE].

  56. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, arXiv:1104.0881 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Procura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Procura, M. & Waalewijn, W.J. Fully-unintegrated parton distribution and fragmentation functions at perturbative k . J. High Energ. Phys. 2012, 132 (2012). https://doi.org/10.1007/JHEP04(2012)132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)132

Keywords

Navigation