Skip to main content
Log in

A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the relevant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. Such observables include: transverse momentum distributions at p T much less then the high energy scattering scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form factor. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a “rapidity renormalization group”. That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any sce- nario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form fac- tor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are universal. We present details of the factorization and re- summation of the jet broadening cross section including a renormalization in p space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.F. Sterman, Partons, factorization and resummation, TASI 95, hep-ph/9606312 [INSPIRE].

  2. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Catani, G. Turnock and B. Webber, Jet broadening measures in e+ e− annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    ADS  Google Scholar 

  4. P.E. Rakow and B. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  5. C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].

    ADS  Google Scholar 

  6. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

    ADS  Google Scholar 

  7. J.C. Collins and F. Tkachov, Breakdown of dimensional regularization in the Sudakov problem, Phys. Lett. B 294 (1992) 403 [hep-ph/9208209] [INSPIRE].

    ADS  Google Scholar 

  8. J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].

  9. J. Collins, Rapidity divergences and valid definitions of parton densities, PoS(LC2008)028 [arXiv:0808.2665] [INSPIRE].

  10. B. Grinstein and I.Z. Rothstein, Effective field theory and matching in nonrelativistic gauge theories, Phys. Rev. D 57 (1998) 78 [hep-ph/9703298] [INSPIRE].

    ADS  Google Scholar 

  11. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  12. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  13. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  14. C.W. Bauer, D. Pirjol and I.W. Stewart, On power suppressed operators and gauge invariance in SCET, Phys. Rev. D 68 (2003) 034021 [hep-ph/0303156] [INSPIRE].

    ADS  Google Scholar 

  15. M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

    ADS  Google Scholar 

  16. I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].

  17. C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].

    ADS  Google Scholar 

  18. A. Idilbi and T. Mehen, Demonstration of the equivalence of soft and zero-bin subtractions, Phys. Rev. D 76 (2007) 094015 [arXiv:0707.1101] [INSPIRE].

    ADS  Google Scholar 

  19. A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [INSPIRE].

    ADS  Google Scholar 

  20. J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].

    Google Scholar 

  21. A. Jain, M. Procura and W.J. Waalewijn, Parton fragmentation within an identified jet at NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

    ADS  Google Scholar 

  24. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Becher, R.J. Hill and M. Neubert, Soft collinear messengers: a new mode in soft collinear effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122] [INSPIRE].

    ADS  Google Scholar 

  26. G. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in soft-collinear effective theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].

    Article  ADS  Google Scholar 

  29. G.T. Bodwin, Factorization of the Drell-Yan cross-section in perturbation theory, Phys. Rev. D 31 (1985) 2616 [Erratum ibid. D 34 (1986) 3932] [INSPIRE].

  30. A. Idilbi and A. Majumder, Extending soft-collinear-effective-theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].

    ADS  Google Scholar 

  31. F. D’Eramo, H. Liu and K. Rajagopal, Jet quenching parameter via Soft Collinear Effective Theory (SCET), Int. J. Mod. Phys. E 20 (2011) 1610 [arXiv:1010.0890] [INSPIRE].

    ADS  Google Scholar 

  32. F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].

    ADS  Google Scholar 

  33. V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys. 134 (1990) 109 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. J.-Y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-collinear factorization and zero-bin subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].

    ADS  Google Scholar 

  35. J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    ADS  Google Scholar 

  36. J. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J. Frenkel and J. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  38. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Korchemsky and A. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  40. A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

    ADS  Google Scholar 

  41. C. Arnesen, I.Z. Rothstein and J. Zupan, Smoking guns for on-shell new physics at the LHC, Phys. Rev. Lett. 103 (2009) 151801 [arXiv:0809.1429] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  44. Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev. D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].

    ADS  Google Scholar 

  45. A. Idilbi, X.-D. Ji and F. Yuan, Transverse momentum distribution through soft-gluon resummation in effective field theory, Phys. Lett. B 625 (2005) 253 [hep-ph/0507196] [INSPIRE].

    ADS  Google Scholar 

  46. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  47. I. Hinchliffe and S. Novaes, On the mean transverse momentum of Higgs bosons at the SSC, Phys. Rev. D 38 (1988) 3475 [INSPIRE].

    ADS  Google Scholar 

  48. R.P. Kauffman, Higgs boson p T in gluon fusion, Phys. Rev. D 44 (1991) 1415 [INSPIRE].

    ADS  Google Scholar 

  49. D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].

    Article  ADS  Google Scholar 

  52. ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb−1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).

    Google Scholar 

  53. CMS collaboration, Combination of CMS searches for a Standard Model Higgs boson, CMS-PAS-HIG-11-032, CERN, Geneva Switzerland (2011).

    Google Scholar 

  54. T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C18 (1983) 69 [INSPIRE].

    ADS  Google Scholar 

  55. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Google Scholar 

  56. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  57. A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].

    Article  ADS  Google Scholar 

  58. X.-D. Ji and F. Yuan, Parton distributions in light cone gauge: where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].

    ADS  Google Scholar 

  59. I. Cherednikov and N. Stefanis, Renormalization, Wilson lines and transverse-momentum dependent parton distribution functions, Phys. Rev. D 77 (2008) 094001 [arXiv:0710.1955] [INSPIRE].

    ADS  Google Scholar 

  60. I. Cherednikov and N. Stefanis, Wilson lines and transverse-momentum dependent parton distribution functions: a renormalization-group analysis, Nucl. Phys. B 802 (2008) 146 [arXiv:0802.2821] [INSPIRE].

    Article  ADS  Google Scholar 

  61. I. Cherednikov and N. Stefanis, Renormalization-group properties of transverse-momentum dependent parton distribution functions in the light-cone gauge with the Mandelstam-Leibbrandt prescription, Phys. Rev. D 80 (2009) 054008 [arXiv:0904.2727] [INSPIRE].

    ADS  Google Scholar 

  62. A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].

    ADS  Google Scholar 

  63. M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T-Wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].

    ADS  Google Scholar 

  64. J.C. Collins, What exactly is a parton density?, Acta Phys. Polon. B 34 (2003) 3103 [hep-ph/0304122] [INSPIRE].

    ADS  Google Scholar 

  65. X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].

    ADS  Google Scholar 

  66. F. Hautmann, Endpoint singularities in unintegrated parton distributions, Phys. Lett. B 655 (2007) 26 [hep-ph/0702196] [INSPIRE].

    ADS  Google Scholar 

  67. S. Meissner, A. Metz and M. Schlegel, Generalized transverse momentum dependent parton distributions of the nucleon, arXiv:0807.1154 [INSPIRE].

  68. B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].

    ADS  Google Scholar 

  69. A. Jain, M. Procura and W.J. Waalewijn, Fully-unintegrated parton distribution and fragmentation functions at perturbative k T , arXiv:1110.0839 [INSPIRE].

  70. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  71. S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A.V. Manohar and W.J. Waalewijn, A QCD analysis of double parton scattering: color correlations, interference effects and evolution, arXiv:1202.3794 [INSPIRE].

  73. R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to pp → H + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].

    ADS  Google Scholar 

  74. R.P. Kauffman, Higgs boson p T in gluon fusion, Phys. Rev. D 44 (1991) 1415 [INSPIRE].

    ADS  Google Scholar 

  75. S.M. Aybat and T.C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].

    ADS  Google Scholar 

  76. T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, arXiv:1112.3907 [INSPIRE].

  77. J. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].

    Article  Google Scholar 

  78. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].

    Article  ADS  Google Scholar 

  80. J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).

    Book  Google Scholar 

  81. I.W. Stewart and I.Z. Rothstein, Glauber gluons in SCET, in SCET workshop 2010, Ringberg Germany (2010).

  82. M. Garcia-Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, arXiv:1111.4996 [INSPIRE].

  83. M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

    ADS  Google Scholar 

  84. R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].

    ADS  Google Scholar 

  85. A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global structure of the \( O\left( {\alpha_s^2} \right) \) dijet soft function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].

    Article  ADS  Google Scholar 

  86. S. Kluth, Tests of quantum chromo dynamics at e+ e− colliders, Rept. Prog. Phys. 69 (2006) 1771 [hep-ex/0603011] [INSPIRE].

    Article  ADS  Google Scholar 

  87. C.F. Berger and G.F. Sterman, Scaling rule for nonperturbative radiation in a class of event shapes, JHEP 09 (2003) 058 [hep-ph/0307394] [INSPIRE].

    Article  ADS  Google Scholar 

  88. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  89. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  90. A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].

    Article  ADS  Google Scholar 

  91. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  92. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

    ADS  Google Scholar 

  93. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].

    ADS  Google Scholar 

  94. L3 collaboration, P. Achard et al., Studies of hadronic event structure in e+ e− annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].

    Article  ADS  Google Scholar 

  95. T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

    ADS  Google Scholar 

  96. J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].

    ADS  Google Scholar 

  97. B. Geshkenbein and M. Terentev, The enhanced power correction to the asymptotics of the pion form-factor, Phys. Lett. B 117 (1982) 243 [INSPIRE].

    ADS  Google Scholar 

  98. V. Chernyak and A. Zhitnitsky, Asymptotic behavior of exclusive processes in QCD, Phys. Rept. 112 (1984) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  99. R. Akhoury, G.F. Sterman and Y. Yao, Exclusive semileptonic decays of B mesons into light mesons, Phys. Rev. D 50 (1994) 358 [INSPIRE].

    ADS  Google Scholar 

  100. C.W. Bauer, D. Pirjol, I.Z. Rothstein and I.W. Stewart, B → M 1 M 2 : factorization, charming penguins, strong phases and polarization, Phys. Rev. D 70 (2004) 054015 [hep-ph/0401188] [INSPIRE].

    ADS  Google Scholar 

  101. C.W. Bauer, I.Z. Rothstein and I.W. Stewart, SCET analysis of B → K π, B → \( {\text{K}}\overline {\text{K}} \) B → ππ decays, Phys. Rev. D 74 (2006) 034010 [hep-ph/0510241] [INSPIRE].

    ADS  Google Scholar 

  102. G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].

    ADS  Google Scholar 

  103. G. Korchemsky and G. Marchesini, Structure function for large X and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  104. A.H. Hoang, A.V. Manohar and I.W. Stewart, The running Coulomb potential and Lamb shift in QCD, Phys. Rev. D 64 (2001) 014033 [hep-ph/0102257] [INSPIRE].

    ADS  Google Scholar 

  105. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duff Neill.

Additional information

ArXiv ePrint: 1202.0814

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, JY., Jain, A., Neill, D. et al. A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory. J. High Energ. Phys. 2012, 84 (2012). https://doi.org/10.1007/JHEP05(2012)084

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)084

Keywords

Navigation