Minimal surfaces and entanglement entropy in anti-de Sitter space

  • Pavel KrtoušEmail author
  • Andrei Zelnikov
Open Access


According to Ryu and Takayanagi, the entanglement entropy in conformal field theory (CFT) is related through the AdS/CFT correspondence to the area of a minimal surface in the bulk. We study this holographic geometrical method of calculating the entanglement entropy in the vacuum case of a CFT which is holographically dual to empty anti-de Sitter (AdS) spacetime. Namely, we investigate the minimal surfaces spanned on boundaries of spherical domains at infinity of hyperbolic space, which represents a time-slice of AdS spacetime. We consider a generic position of two spherical domains: two disjoint domains, overlapping domains, and touching domains. All these cases are treated in a unified way. We find exact expressions in a closed form for the minimal surfaces and the renormalized expression for the area. We study also the embedding of the minimal surfaces into full AdS spacetime and we find that for a proper choice of the static Killing vector we can model a dynamical situation of “tearing” of the minimal surface when the domains on which it is spanned are moved away from each other.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].ADSGoogle Scholar
  4. [4]
    S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  7. [7]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    V.P. Frolov and I. Novikov, Dynamical origin of the entropy of a black hole, Phys. Rev. D 48 (1993) 4545 [gr-qc/9309001] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.O. Barvinsky, V.P. Frolov and A.I. Zelnikov, Wavefunction of a black hole and the dynamical origin of entropy, Phys. Rev. D 51 (1995) 1741 [gr-qc/9404036] [INSPIRE].ADSGoogle Scholar
  11. [11]
    L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [Dokl. Akad. Nauk Ser. Fiz. 177 (1967) 70] [Sov. Phys. Usp. 34 (1991) 394] [Gen. Rel. Grav. 32 (2000) 365] [INSPIRE].
  13. [13]
    T. Jacobson, Black hole entropy and induced gravity, gr-qc/9404039 [INSPIRE].
  14. [14]
    V.P. Frolov, D.V. Fursaev and A.I. Zelnikov, Statistical origin of black hole entropy in induced gravity, Nucl. Phys. B 486 (1997) 339 [hep-th/9607104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    V.P. Frolov, D.V. Fursaev and A.I. Zelnikov, Black hole statistical mechanics and induced gravity, Nucl. Phys. Proc. Suppl. 57 (1997) 192 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    V.P. Frolov, D. Fursaev and A. Zelnikov, CFT and black hole entropy in induced gravity, JHEP 03 (2003) 038 [hep-th/0302207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  20. [20]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R.C. Myers, R. Pourhasan and M. Smolkin, On spacetime entanglement, JHEP 06 (2013) 013 [arXiv:1304.2030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  25. [25]
    T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  26. [26]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions, JHEP 03 (2008) 006 [arXiv:0711.4118] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    E. Tonni, Holographic entanglement entropy: near horizon geometry and disconnected regions, JHEP 05 (2011) 004 [arXiv:1011.0166] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, A hole-ographic spacetime, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R.C. Myers, J. Rao and S. Sugishita, Holographic holes in higher dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Lewkowycz, Holographic entanglement entropy and confinement, JHEP 05 (2012) 032 [arXiv:1204.0588] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    P. Krtous and A. Zelnikov, Entanglement entropy of spherical domains in anti-de Sitter space, Phys. Rev. D 89 (2014) 104058 [arXiv:1311.1685] [INSPIRE].ADSzbMATHGoogle Scholar
  35. [35]
    S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973) [INSPIRE].CrossRefzbMATHGoogle Scholar
  36. [36]
    I. Gradshteyn and I. Ryzhik, Table of integrals, series, and products, transl. from the Russian by Scripta Technica Inc. 5th ed., Academic Press Inc., Boston U.S.A. (1994).Google Scholar
  37. [37]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, Phys. Lett. B 459 (1999) 527 [hep-th/9904149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].
  39. [39]
    P. Byrd and M. Friedman, Handbook of elliptic integrals for engineers and scientists, Grundlehren der mathematischen Wissenschaften, Springer-Verlag Germany (1971).Google Scholar
  40. [40]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglementthermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  2. 2.Theoretical Physics Institute, Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations