Skip to main content
Log in

Holographic entanglement entropy and confinement

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phase transition in the holographic entanglement entropy for various confining models. This transition occurs for the entanglement entropy of a strip at a critical value of the strip width. Our main interest is to examine the critical width for models with several parameters. For these models, the critical width, the glueball mass and the string tension all become functions of these two parameters. Comparing the behavior of the critical width in the entanglement entropy and these other scales, we find that l c seems to follow closely the deconfinement temperature and the glueball mass. The behavior of the string tension is similar to l c, despite of being parametrically smaller than the other quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  2. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  3. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  5. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].

    Article  ADS  Google Scholar 

  9. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  12. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  19. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703 [arXiv:0710.5483] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. I. Bah, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic geometric entropy at finite temperature from black holes in global Anti de Sitter spaces, Int. J. Mod. Phys. A 27 (2012) 1250048 [arXiv:0809.2912] [INSPIRE].

    ADS  Google Scholar 

  22. M. Fujita, Y. Hatsuda and T. Takayanagi, Probing AdS wormholes by entanglement entropy, JHEP 06 (2011) 141 [arXiv:1104.4907] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. R.-G. Cai, S. He, L. Li and Y.-L. Zhang, Holographic entanglement entropy in insulator/superconductor transition, arXiv:1203.6620 [INSPIRE].

  24. P. Buividovich and M. Polikarpov, Numerical study of entanglement entropy in SU(2) lattice gauge theory, Nucl. Phys. B 802 (2008) 458 [arXiv:0802.4247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Velytsky, Entanglement entropy in d + 1 SU(N) gauge theory, Phys. Rev. D 77 (2008) 085021 [arXiv:0801.4111] [INSPIRE].

    ADS  Google Scholar 

  26. C. Csáki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from supergravity, JHEP 01 (1999) 017 [hep-th/9806021] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.A. Minahan, Glueball mass spectra and other issues for supergravity duals of QCD models, JHEP 01 (1999) 020 [hep-th/9811156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. N.R. Constable and R.C. Myers, Spin two glueballs, positive energy theorems and the AdS/CFT correspondence, JHEP 10 (1999) 037 [hep-th/9908175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  31. A. Buchel and J.T. Liu, Thermodynamics of the N = 2* flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Buchel, N = 2* hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2* strongly coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitor Lewkowycz.

Additional information

ArXiv ePrint: 1204.0588v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewkowycz, A. Holographic entanglement entropy and confinement. J. High Energ. Phys. 2012, 32 (2012). https://doi.org/10.1007/JHEP05(2012)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)032

Keywords

Navigation