Skip to main content
Log in

Generalized gravitational entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector.

A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. J.M. Bardeen, B. Carter and S. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  6. T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

  7. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  9. D.V. Fursaev, Entanglement entropy in quantum gravity and the Plateau groblem, Phys. Rev. D 77 (2008) 124002 [arXiv:0711.1221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. D.V. Fursaev, ‘Thermodynamicsof minimal surfaces and entropic origin of gravity, Phys. Rev. D 82 (2010) 064013 [Erratum ibid. D 86 (2012) 049903] [arXiv:1006.2623] [INSPIRE].

    ADS  Google Scholar 

  11. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  13. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions ×S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Bañados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. W. Nelson, A comment on black hole entropy in string theory, Phys. Rev. D 50 (1994) 7400 [hep-th/9406011] [INSPIRE].

    ADS  Google Scholar 

  20. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Belin, A. Maloney and S. Matsuura, Holographic phases of Renyi entropies, arXiv:1306.2640 [INSPIRE].

  25. I. Klebanov, private communication.

  26. W. Unruh, G. Hayward, W. Israel and D. Mcmanus, Cosmic string loops are straight, Phys. Rev. Lett. 62 (1989) 2897 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. B. Boisseau, C. Charmousis and B. Linet, Dynamics of a selfgravitating thin cosmic string, Phys. Rev. D 55 (1997) 616 [gr-qc/9607029] [INSPIRE].

    ADS  Google Scholar 

  28. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  30. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  34. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP 02 (2007) 068 [hep-th/0701108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Bak, M. Gutperle and A. Karch, Time dependent black holes and thermal equilibration, JHEP 12 (2007) 034 [arXiv:0708.3691] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Freivogel et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  43. R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].

    ADS  Google Scholar 

  44. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, arXiv:1212.5183 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitor Lewkowycz.

Additional information

ArXiv ePrint: 1304.4926

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewkowycz, A., Maldacena, J. Generalized gravitational entropy. J. High Energ. Phys. 2013, 90 (2013). https://doi.org/10.1007/JHEP08(2013)090

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)090

Keywords

Navigation