Skip to main content
Log in

Black holes in general relativity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R.: Phys. Rev. Letters14, 57 (1965).

    Google Scholar 

  2. —— In: de Witt, C.M., Wheeler, J.A. (Eds.): Battelle Rencontres (1967). New York: Benjamin 1968.

    Google Scholar 

  3. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space time. Cambridge: Cambridge University Press (to be published).

  4. —— Penrose, R.: Proc. Roy. Soc. A314, 529 (1970).

    Google Scholar 

  5. Penrose, R.: Seminar at Cambridge University, January 1971 (unpublished).

  6. Gibbons, G.W., Penrose, R.: To be published.

  7. Geroch, R.P.: J. Math. Phys.11, 437 (1970).

    Google Scholar 

  8. Israel, W.: Phys. Rev.164, 1776 (1967).

    Google Scholar 

  9. Carter, B.: Phys. Rev. Letters26, 331 (1971).

    Google Scholar 

  10. —— Phys. Rev.174, 1559 (1968).

    Google Scholar 

  11. Müller zum Hagen, H.: Proc. Cambridge Phil. Soc.68, 199 (1970).

    Google Scholar 

  12. Carter, B.: Commun. math. Phys.17, 233 (1970).

    Google Scholar 

  13. Newman, E.T., Penrose, R.: J. Math. Phys.3, 566 (1962).

    Google Scholar 

  14. Hawking, S.W.: Proc. Roy. Soc. A300, 187 (1967).

    Google Scholar 

  15. Sachs, R.K.: J. Math. Phys.3, 908 (1962).

    Google Scholar 

  16. Penrose, R.: Characteristic initial data for zero rest mass including gravitation, preprint (1961).

  17. Carter, B.: J. Math. Phys.10, 70 (1969).

    Google Scholar 

  18. Israel, W.: Commun. math. Phys.8, 245 (1968).

    Google Scholar 

  19. Lichnerowicz, A.: Théories relativistes de la gravitation et de l'électromagnétisme. Paris: Masson 1955.

    Google Scholar 

  20. Penrose, R.: Nuovo Cimento Serie 1,1, 252 (1969).

    Google Scholar 

  21. Newman, E.T., Penrose, R.: J. Math. Phys.7, 863 (1966).

    Google Scholar 

  22. Christodoulou, D.: Phys. Rev. Letters25, 1596 (1970).

    Google Scholar 

  23. Penrose, R.: Phys. Rev. Letters10, 66 (1963).

    Google Scholar 

  24. Hartle, J.B., Hawking, S.W.: Commun. math. Phys. To be published.

  25. Hawking, S.W.: Commun. math. Phys.18, 301 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawking, S.W. Black holes in general relativity. Commun.Math. Phys. 25, 152–166 (1972). https://doi.org/10.1007/BF01877517

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01877517

Keywords

Navigation