Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Classical scale invariance in the inert doublet model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Constraints on the parameter space in an inert doublet model with two active doublets

19 March 2020

Marco Merchand & Marc Sher

Dark matter in minimal dimensional transmutation with multicritical-point principle

15 January 2021

Yuta Hamada, Hikaru Kawai, … Kei Yagyu

Light dark matter around 100 GeV from the inert doublet model

08 October 2022

Shehu AbdusSalam, Leila Kalhor & Mohammad Mohammadidoust

Dark matter in three-Higgs-doublet models with S3 symmetry

21 January 2022

W. Khater, A. Kunčinas, … M. N. Rebelo

Living orthogonally: quasi-universal extra dimensions

31 January 2019

Mathew Thomas Arun, Debajyoti Choudhury & Divya Sachdeva

A light dilaton at the LHC

20 May 2020

Aqeel Ahmed, Alberto Mariotti & Saereh Najjari

Distinguishing inert Higgs doublet and inert triplet scenarios

08 August 2020

Shilpa Jangid & Priyotosh Bandyopadhyay

The Higgs-portal for dark matter: effective field theories versus concrete realizations

24 July 2021

Giorgio Arcadi, Abdelhak Djouadi & Marumi Kado

Fermion mass hierarchy and g − 2 anomalies in an extended 3HDM Model

05 October 2021

A. E. Cárcamo Hernández, Sergey Kovalenko, … Ivan Schmidt

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 04 September 2015

Classical scale invariance in the inert doublet model

  • Alexis D. Plascencia1 

Journal of High Energy Physics volume 2015, Article number: 26 (2015) Cite this article

  • 371 Accesses

  • 38 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The inert doublet model (IDM) is a minimal extension of the Standard Model (SM) that can account for the dark matter in the universe. Naturalness arguments motivate us to study whether the model can be embedded into a theory with dynamically generated scales. In this work we study a classically scale invariant version of the IDM with a minimal hidden sector, which has a U(1)CW gauge symmetry and a complex scalar Φ. The mass scale is generated in the hidden sector via the Coleman-Weinberg (CW) mechanism and communicated to the two Higgs doublets via portal couplings. Since the CW scalar remains light, acquires a vacuum expectation value and mixes with the SM Higgs boson, the phenomenology of this construction can be modified with respect to the traditional IDM. We analyze the impact of adding this CW scalar and the Z′ gauge boson on the calculation of the dark matter relic density and on the spin-independent nucleon cross section for direct detection experiments. Finally, by studying the RG equations we find regions in parameter space which remain valid all the way up to the Planck scale.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  2. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

  3. R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C.T. Hill, Conjecture on the physical implications of the scale anomaly, hep-th/0510177 [INSPIRE].

  5. K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].

    ADS  Google Scholar 

  7. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  8. S. Iso, N. Okada and Y. Orikasa, Classically conformal B − L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Holthausen, M. Lindner and M.A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].

    ADS  Google Scholar 

  10. L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. J.S. Lee and A. Pilaftsis, Radiative Corrections to Scalar Masses and Mixing in a Scale Invariant Two Higgs Doublet Model, Phys. Rev. D 86 (2012) 035004 [arXiv:1201.4891] [INSPIRE].

    ADS  Google Scholar 

  12. C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].

    ADS  Google Scholar 

  15. A. Farzinnia, H.-J. He and J. Ren, Natural Electroweak Symmetry Breaking from Scale Invariant Higgs Mechanism, Phys. Lett. B 727 (2013) 141 [arXiv:1308.0295] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

    ADS  Google Scholar 

  19. O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with Veltman Conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].

    ADS  Google Scholar 

  20. S. Benic and B. Radovcic, Electroweak breaking and Dark Matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, JHEP 08 (2014) 026 [arXiv:1403.4953] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Allison, C.T. Hill and G.G. Ross, Ultra-weak sector, Higgs boson mass and the dilaton, Phys. Lett. B 738 (2014) 191 [arXiv:1404.6268] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 01 (2015) 143 [arXiv:1409.5776] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Di Chiara and K. Tuominen, A minimal model for SU(N ) vector dark matter, arXiv:1506.03285 [INSPIRE].

  25. T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  26. N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  27. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  28. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  29. T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H. Davoudiasl and I.M. Lewis, Right-Handed Neutrinos as the Origin of the Electroweak Scale, Phys. Rev. D 90 (2014) 033003 [arXiv:1404.6260] [INSPIRE].

    ADS  Google Scholar 

  31. V. Martín Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in the \( hh\to b\overline{b}\ W\;W\to b\overline{b}{\ell}^{+}\nu {\ell}^{-}\overline{\nu} \) decay channel, JHEP 08 (2015) 004 [arXiv:1501.03799] [INSPIRE].

    Google Scholar 

  32. T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Goudelis, B. Herrmann and O. Stal, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].

    ADS  Google Scholar 

  38. XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].

  39. G. Bélanger, B. Dumont, A. Goudelis, B. Herrmann, S. Kraml and D. Sengupta, Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC, Phys. Rev. D 91 (2015) 115011 [arXiv:1503.07367] [INSPIRE].

    ADS  Google Scholar 

  40. A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An Updated Analysis of Inert Higgs Doublet Model in light of the Recent Results from LUX, PLANCK, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].

    Article  ADS  Google Scholar 

  41. T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].

  42. M. Gustafsson, The Inert Doublet Model and Its Phenomenology, PoS(CHARGED 2010) 030 [arXiv:1106.1719] [INSPIRE].

  43. A. Dutta Banik and D. Majumdar, Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson, Eur. Phys. J. C 74 (2014) 3142 [arXiv:1404.5840] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  45. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  46. D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].

  47. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

    ADS  Google Scholar 

  48. CDMS-II collaboration, P.L. Brink et al., Beyond the CDMS-II dark matter search: SuperCDMS, eConf C 041213 (2004) 2529 [astro-ph/0503583] [INSPIRE].

  49. XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].

  50. M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev. D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE].

    ADS  Google Scholar 

  51. T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP 03 (2015) 109 [arXiv:1501.04161] [INSPIRE].

    Article  Google Scholar 

  52. M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  53. M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Khan and S. Rakshit, Constraints on inert dark matter from metastability of electroweak vacuum, arXiv:1503.03085 [INSPIRE].

  57. F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

    Article  ADS  Google Scholar 

  59. I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

    ADS  Google Scholar 

  60. B. Swiezewska, Yukawa independent constraints for two-Higgs-doublet models with a 125 GeV Higgs boson, Phys. Rev. D 88 (2013) 055027 [Erratum ibid. D 88 (2013) 119903] [arXiv:1209.5725] [INSPIRE].

  61. ATLAS, CDF, CMS, D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  62. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  63. V.V. Khoze and G. Ro, Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C. Bonilla, D. Sokolowska, J.L. Diaz-Cruz, M. Krawczyk and N. Darvishi, IDMS: Inert Dark Matter Model with a complex singlet, arXiv:1412.8730 [INSPIRE].

  65. M. Hindmarsh, R. Kirk, J.M. No and S.M. West, Dark Matter with Topological Defects in the Inert Doublet Model, JCAP 05 (2015) 048 [arXiv:1412.4821] [INSPIRE].

    Article  ADS  Google Scholar 

  66. P. Ko, Y. Omura and C. Yu, Dark matter and dark force in the type-I inert 2HDM with local U(1) H gauge symmetry, JHEP 11 (2014) 054 [arXiv:1405.2138] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J. Guo, Z. Kang, P. Ko and Y. Orikasa, Accidental dark matter: Case in the scale invariant local B-L model, Phys. Rev. D 91 (2015) 115017 [arXiv:1502.00508] [INSPIRE].

    ADS  Google Scholar 

  68. E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].

    ADS  Google Scholar 

  69. M. Aoki, S. Kanemura and H. Yokoya, Reconstruction of Inert Doublet Scalars at the International Linear Collider, Phys. Lett. B 725 (2013) 302 [arXiv:1303.6191] [INSPIRE].

    Article  ADS  Google Scholar 

  70. E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton Signals in the Inert Doublet Model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].

    ADS  Google Scholar 

  71. M. Krawczyk, D. Sokolowska, P. Swaczyna and B. Swiezewska, Constraining Inert Dark Matter by R γγ and WMAP data, JHEP 09 (2013) 055 [arXiv:1305.6266] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom

    Alexis D. Plascencia

Authors
  1. Alexis D. Plascencia
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

ArXiv ePrint: 1507.04996

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plascencia, A.D. Classical scale invariance in the inert doublet model. J. High Energ. Phys. 2015, 26 (2015). https://doi.org/10.1007/JHEP09(2015)026

Download citation

  • Received: 24 July 2015

  • Accepted: 12 August 2015

  • Published: 04 September 2015

  • DOI: https://doi.org/10.1007/JHEP09(2015)026

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.