Advertisement

Diphoton resonance from a warped extra dimension

  • Martin Bauer
  • Clara Hörner
  • Matthias NeubertEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with \( \mathcal{O} \)(1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the \( S\to\ \gamma \gamma, W\ W,ZZ,Z\gamma, t\overline{t} \) and dijet decay rates. We find that the S decay mode is strongly suppressed, such that Br(S)/Br(Sγγ) < 0.1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed ppSγγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.

Useful side products of our analysis, which can be adapted to almost any model for the diphoton resonance, are the calculation of the gluon-fusion production cross section σ(ppS) at NNLO in QCD, an exact expression for the inclusive Sgg decay rate at N3LO, a study of the \( S\to t\overline{t}h \) three-body decay and a phenomenological analysis of portal couplings connecting S with the Higgs field.

Keywords

Phenomenology of Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  3. [3]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Staub et al., Precision tools and models to narrow in on the 750 GeV diphoton resonance, arXiv:1602.05581 [INSPIRE].
  5. [5]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: Production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].
  9. [9]
    C. Petersson and R. Torre, 750 GeV diphoton excess from the goldstino superpartner, Phys. Rev. Lett. 116 (2016) 151804 [arXiv:1512.05333] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Ding, L. Huang, T. Li and B. Zhu, Interpreting 750 GeV diphoton excess with R-parity violating supersymmetry, arXiv:1512.06560 [INSPIRE].
  11. [11]
    B.C. Allanach, P.S.B. Dev, S.A. Renner and K. Sakurai, 750 GeV diphoton excess explained by a resonant sneutrino in R-parity violating supersymmetry, Phys. Rev. D 93 (2016) 115022 [arXiv:1512.07645] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Harigaya and Y. Nomura, Composite models for the 750 GeV diphoton excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serodio, Singlets in composite Higgs models in light of the LHC di-photon searches, arXiv:1512.07242 [INSPIRE].
  14. [14]
    M. Son and A. Urbano, A new scalar resonance at 750 GeV: towards a proof of concept in favor of strongly interacting theories, JHEP 05 (2016) 181 [arXiv:1512.08307] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Harigaya and Y. Nomura, A composite model for the 750 GeV diphoton excess, JHEP 03 (2016) 091 [arXiv:1602.01092] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Cox, A.D. Medina, T.S. Ray and A. Spray, Diphoton excess at 750 GeV from a radion in the bulk-Higgs scenario, arXiv:1512.05618 [INSPIRE].
  17. [17]
    A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC, arXiv:1512.05771 [INSPIRE].
  18. [18]
    D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri and T. Samui, Radion candidate for the LHC diphoton resonance, arXiv:1512.06674 [INSPIRE].
  19. [19]
    D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, On a possible large width 750 GeV diphoton resonance at ATLAS and CMS, arXiv:1512.05778 [INSPIRE].
  20. [20]
    M. Bauer and M. Neubert, Flavor anomalies, the 750 GeV diphoton excess and a dark matter candidate, Phys. Rev. D 93 (2016) 115030 [arXiv:1512.06828] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C.W. Murphy, Vector leptoquarks and the 750 GeV diphoton resonance at the LHC, Phys. Lett. B 757 (2016) 192 [arXiv:1512.06976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect constraints on the scalar di-photon resonance at the LHC, JHEP 05 (2016) 187 [arXiv:1512.08500] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Quark seesaw, vectorlike fermions and diphoton excess, JHEP 02 (2016) 186 [arXiv:1512.08507] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.E.C. Hernández, A novel and economical explanation for SM fermion masses and mixings and its connection with the 750 GeV diphoton excess, arXiv:1512.09092 [INSPIRE].
  25. [25]
    G. Belanger and C. Delaunay, A dark sector for g μ − 2, R K and a diphoton resonance, arXiv:1603.03333 [INSPIRE].
  26. [26]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  27. [27]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].
  28. [28]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  29. [29]
    D.E. Kaplan and T.M.P. Tait, New tools for fermion masses from extra dimensions, JHEP 11 (2001) 051 [hep-ph/0110126] [INSPIRE].
  30. [30]
    C. Cai, Z.-H. Yu and H.-H. Zhang, 750 GeV diphoton resonance as a singlet scalar in an extra dimensional model, Phys. Rev. D 93 (2016) 075033 [arXiv:1512.08440] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Abel and V.V. Khoze, Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop, JHEP 05 (2016) 063 [arXiv:1601.07167] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.T. Arun and P. Saha, Gravitons in multiply warped scenarios — At 750 GeV and beyond, arXiv:1512.06335 [INSPIRE].
  33. [33]
    C.-Q. Geng and D. Huang, Note on spin-2 particle interpretation of the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 115032 [arXiv:1601.07385] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.B. Giddings and H. Zhang, Kaluza-Klein graviton phenomenology for warped compactifications and the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 115002 [arXiv:1602.02793] [INSPIRE].ADSGoogle Scholar
  35. [35]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  36. [36]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
  37. [37]
    C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].
  38. [38]
    M. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev. D 68 (2003) 035010 [hep-ph/0305188] [INSPIRE].
  39. [39]
    R. Malm, M. Neubert, K. Novotny and C. Schmell, 5D perspective on Higgs production at the boundary of a warped extra dimension, JHEP 01 (2014) 173 [arXiv:1303.5702] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].
  41. [41]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].
  42. [42]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].
  43. [43]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  44. [44]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    J. Hahn, C. Hörner, R. Malm, M. Neubert, K. Novotny and C. Schmell, Higgs decay into two photons at the boundary of a warped extra dimension, Eur. Phys. J. C 74 (2014) 2857 [arXiv:1312.5731] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].
  49. [49]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].
  51. [51]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P.R. Archer, M. Carena, A. Carmona and M. Neubert, Higgs production and decay in models of a warped extra dimension with a bulk Higgs, JHEP 01 (2015) 060 [arXiv:1408.5406] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Malm, M. Neubert and C. Schmell, Higgs couplings and phenomenology in a warped extra dimension, JHEP 02 (2015) 008 [arXiv:1408.4456] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett. 108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].
  56. [56]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].
  57. [57]
    P.R. Archer, The fermion mass hierarchy in models with warped extra dimensions and a bulk Higgs, JHEP 09 (2012) 095 [arXiv:1204.4730] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [INSPIRE].ADSGoogle Scholar
  60. [60]
    B. Grinstein and L. Randall, The renormalization of g 2, Phys. Lett. B 217 (1989) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.C. Collins, A. Duncan and S.D. Joglekar, Trace and dilatation anomalies in gauge theories, Phys. Rev. D 16 (1977) 438 [INSPIRE].ADSGoogle Scholar
  62. [62]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
  63. [63]
    K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
  64. [64]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC’s in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  65. [65]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS5, JHEP 11 (2001) 003 [hep-th/0108114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    M. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE].
  68. [68]
    C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    CuTe program and manual, https://cute.hepforge.org.
  71. [71]
    T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small q T : infrared safety from the collinear anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  75. [75]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A.M. Cooper-Sarkar, HERA collider results, PoS (DIS2015) 005 [arXiv:1507.03849] [INSPIRE].
  77. [77]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P.A. Baikov and K.G. Chetyrkin, Top quark mediated Higgs boson decay into hadrons to order α s5, Phys. Rev. Lett. 97 (2006) 061803 [hep-ph/0604194] [INSPIRE].
  79. [79]
    M. Schreck and M. Steinhauser, Higgs decay to gluons at NNLO, Phys. Lett. B 655 (2007) 148 [arXiv:0708.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    U. Haisch, private communication.Google Scholar
  81. [81]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  82. [82]
    N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the wedge: search strategies for extended Higgs sectors with heavy flavor final states, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M.R. Buckley, Wide or narrow? The phenomenology of 750 GeV diphotons, Eur. Phys. J. C 76 (2016) 345 [arXiv:1601.04751] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    CMS Collaboration, Search for resonances decaying to dijet final states at \( \sqrt{s}=8 \) TeV with scouting data, CMS-PAS-EXO-14-005 (2014).
  86. [86]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930].
  88. [88]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  89. [89]
    ATLAS collaboration, A search for tt resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
  90. [90]
    CMS collaboration, Search for di-Higgs resonances decaying to 4 bottom quarks, CMS-PAS-HIG-14-013 (2014).
  91. [91]
    K. Cheung, P. Ko, J.S. Lee, J. Park and P.-Y. Tseng, A Higgcision study on the 750 GeV di-photon resonance and 125 GeV SM Higgs boson with the Higgs-singlet mixing, arXiv:1512.07853 [INSPIRE].
  92. [92]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV portal: LHC phenomenology and dark matter candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  93. [93]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    K. Cheung, P. Ko, J.S. Lee and P.-Y. Tseng, Bounds on Higgs-portal models from the LHC Higgs data, JHEP 10 (2015) 057 [arXiv:1507.06158] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044 (2015).
  96. [96]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-15-002 (2015).

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Martin Bauer
    • 1
  • Clara Hörner
    • 2
  • Matthias Neubert
    • 2
    • 3
    Email author
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of Physics & LEPPCornell UniversityIthacaU.S.A.

Personalised recommendations