Skip to main content
Log in

Higgs after the discovery: a status report

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, the ATLAS and CMS collaborations have announced the discovery of a 125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and 2012 LHC and Tevatron Higgs data in the context of simplified new physics models, paying close attention to models which can enhance the diphoton rate and allow for a natural weak-scale theory. Combining the available LHC and Tevatron data in the hZZ * → 4l, hWW *lνlν, hγγ, hjjγγjj and hV\( b\overline{b}V \) channels, we derive constraints on an effective low-energy theory of the Higgs boson. We map several simplified scenarios to the effective theory, capturing numerous new physics models such as supersymmetry, composite Higgs, dilaton. We further study models with extended Higgs sectors which can naturally enhance the diphoton rate. We find that the current Higgs data are consistent with the Standard Model Higgs boson and, consequently, the parameter space in all models which go beyond the Standard Model is highly constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  2. J. Incandela, Observation of a new boson with a mass near 125 GeV, PAS-HIG-12-020 (2012).

  3. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  4. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  5. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ (*) → 4ℓ channel with the ATLAS detector., ATLAS-CONF-2012-092 (2012).

  6. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the decay channel H → ZZ (*) → 4ℓ with 4.8 fb-1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, Observation of an Excess of Events in the Search for the Standard Model Higgs Boson in the HWW (*)ℓνℓν Channel with the ATLAS Detector, ATLAS-CONF-2012-098 (2012).

  8. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the HWW (*)ℓνℓν decay mode with 4.7/fb of ATLAS data at \( \sqrt{s}=7 \) , TeV, Phys. Lett. B 716 (2012)62 [arXiv:1206.0756] [INSPIRE].

    ADS  Google Scholar 

  9. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, arXiv:1207.0210 [INSPIRE].

  10. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, PAS-HIG-12-015.

  11. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  12. CMS collaboration, Evidence for a new state in the search for the standard model Higgs boson in the HZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, PAS-HIG-12-016.

  13. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].

  14. CMS collaboration, Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=8 \) TeV, PAS-HIG-12-017.

  15. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    ADS  Google Scholar 

  16. CMS collaboratin, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for ICHEP 2012, PAS-HIG-12-019.

  17. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt{s}=7 \), Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].

    ADS  Google Scholar 

  18. Tevatron New Physics Higgs Working Group, CDF collaboration, D0 collaboration, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb 1 of Data, arXiv:1207.0449 [INSPIRE].

  19. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the Higgs, arXiv:1206.4201 [INSPIRE].

  21. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Azatov, R. Contino and J. Galloway, Contextualizing the Higgs at the LHC, arXiv:1206.3171 [INSPIRE].

  23. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.R. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC Experimental Scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].

    Article  Google Scholar 

  28. J.F. Kamenik and C. Smith, Could a light Higgs boson illuminate the dark sector?, Phys. Rev. D 85 (2012) 093017 [arXiv:1201.4814] [INSPIRE].

    ADS  Google Scholar 

  29. E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs Searches on the Four Generation Standard Model, arXiv:1204.1975 [INSPIRE].

  30. M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, arXiv:1205.0232 [INSPIRE].

  31. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs Sketch, arXiv:1205.4032 [INSPIRE].

  32. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Azatov, S. Chang, N. Craig and J. Galloway, Early Higgs Hints for Non-Minimal Supersymmetry, arXiv:1206.1058 [INSPIRE].

  34. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion, arXiv:1206.5853 [INSPIRE].

  36. B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].

    ADS  Google Scholar 

  37. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ → ℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405] [INSPIRE].

    ADS  Google Scholar 

  39. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, arXiv:1201.3084 [INSPIRE].

  40. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  41. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].

  43. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.R. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs Search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  45. I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the Standard Model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct Detection of Higgs-Portal Dark Matter at the LHC, arXiv:1205.3169 [INSPIRE].

  48. M. Schmaltz, The Simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. D.E. Kaplan and M. Schmaltz, The Little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  53. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: Hgg, γγ, Phys. Lett. B 563 (2003) 191 [Erratum ibid. B 603 (2004) 257-259] [hep-ph/0302188] [INSPIRE].

  54. Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Z. Chacko, H.-S. Goh and R. Harnik, A Twin Higgs model from left-right symmetry, JHEP 01 (2006) 108 [hep-ph/0512088] [INSPIRE].

    Article  ADS  Google Scholar 

  56. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].

    ADS  Google Scholar 

  58. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  59. K. Cheung and T.-C. Yuan, Could the excess seen at 124126 GeV be due to the Randall-Sundrum Radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  60. O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T’Jampens, et al., The Two Higgs Doublet of Type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  61. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].

    ADS  Google Scholar 

  63. I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Chang, C.A. Newby, N. Raj and C. Wanotayaroj, Revisiting Theories with Enhanced Higgs Couplings to Weak Gauge Bosons, arXiv:1207.0493 [INSPIRE].

  65. CMS collaboration, S. Chatrchyan et al., A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-HIG-12-005 [arXiv:1207.2666] [INSPIRE].

  66. ATLAS collaboration, Search for Doubly Charged Higgs Boson Production in Like-sign Muon Pairs in pp Collisions at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2011-127 (2011).

  67. CDF collaboration, T. Aaltonen et al., Search for new physics in high p T like-sign dilepton events at CDF II, Phys. Rev. Lett. 107 (2011) 181801 [arXiv:1108.0101] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D0 collaboration, V.M. Abazov et al., Search for doubly-charged Higgs boson pair production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 108 (2012) 021801 [arXiv:1106.4250] [INSPIRE].

    Article  ADS  Google Scholar 

  69. CMS collaboration, S. Chatrchyan et al., Search for anomalous production of multilepton events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].

    Article  ADS  Google Scholar 

  70. CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy, Phys. Rev. Lett. 109 (2012) 071803 [arXiv:1205.6615] [INSPIRE].

    Article  ADS  Google Scholar 

  71. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in sqrts = 7 TeV proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    ADS  Google Scholar 

  72. ATLAS collaboration, G. Aad et al., Search for supersymmetry in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 261804 [arXiv:1204.5638] [INSPIRE].

    Article  ADS  Google Scholar 

  73. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, arXiv:1207.1093 [INSPIRE].

  74. R. Benbrik, M.G. Bock, S. Heinemeyer, O. Stal, G. Weiglein, et al., Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, arXiv:1207.1096 [INSPIRE].

  75. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, arXiv:1207.1344 [INSPIRE].

  76. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].

  77. M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX s γ: Standard model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].

    Article  ADS  Google Scholar 

  78. F. Borzumati and C. Greub, 2HDMs predictions for \( \overline{B}\to {X_s}\gamma \) in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].

    ADS  Google Scholar 

  79. A.L. Kagan and M. Neubert, QCD anatomy of BX s γ decays, Eur. Phys. J. C 7 (1999) 5 [hep-ph/9805303] [INSPIRE].

    ADS  Google Scholar 

  80. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton Properties, arXiv:1010.1589 [INSPIRE].

  81. M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, et al., Estimate of \( \overline{B}\to {X_s}\gamma \) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \( \overline{B}\to {X_s}\gamma \) Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].

    Article  ADS  Google Scholar 

  83. J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0}-{{\overline{B}}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

    Article  ADS  Google Scholar 

  84. A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H. Lacker, et al., Constraints on new physics in \( B-\overline{B} \) mixing in the light of recent LHCb data, Phys. Rev. D 86 (2012) 033008 [arXiv:1203.0238] [INSPIRE].

    ADS  Google Scholar 

  85. CMS collaboration, S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

    Article  ADS  Google Scholar 

  86. ATLAS collaboration, G. Aad et al., Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Volansky.

Additional information

ArXiv ePrint: 1207.1718

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmi, D., Falkowski, A., Kuflik, E. et al. Higgs after the discovery: a status report. J. High Energ. Phys. 2012, 196 (2012). https://doi.org/10.1007/JHEP10(2012)196

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)196

Keywords

Navigation