Skip to main content
Log in

Electroweak gauge-boson production at small q T : Infrared safety from the collinear anomaly

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio M V /q T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale \( {q_* } \sim {M_V}{e^{ - {\text{const}}/{\alpha_s}\left( {{M_V}} \right)}} \), which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either α s or q T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q T  = 0, including the normalization and first-order α s (q ) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.L. Dokshitzer, D. Diakonov and S. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Parisi and R. Petronzio, Small Transverse Momentum Distributions in Hard Processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Curci, M. Greco and Y. Srivastava, QCD jets from coherent states, Nucl. Phys. B 159 (1979) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  4. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  6. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  7. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  8. M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

    ADS  Google Scholar 

  10. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Beneke, lectures delivered at the Helmholtz International Summer School on Heavy Quark Physics, Dubna, Russia, June 2005 http://theor.jinr.ru/∼hq2005/Lectures/Beneke/Beneke-Dubna-05.pdf.

  12. J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].

    ADS  Google Scholar 

  15. T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

    ADS  Google Scholar 

  16. J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, arXiv:1104.0881 [INSPIRE].

  17. A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

    ADS  Google Scholar 

  18. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  19. S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory with Numerical Results, Phys. Rev. D 83 (2011) 053007 [arXiv:1007.3773] [INSPIRE].

    ADS  Google Scholar 

  20. T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

  21. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  22. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].

    ADS  Google Scholar 

  24. R. Ellis, G. Martinelli and R. Petronzio, Lepton Pair Production at Large Transverse Momentum in Second Order QCD, Nucl. Phys. B 211 (1983) 106 [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.B. Arnold and M. Reno, The Complete Computation of High p T W and Z Production in 2nd Order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.J. Gonsalves, J. Pawlowski and C.-F. Wai, QCD radiative corrections to electroweak boson production at large transverse momentum in hadron collisions, Phys. Rev. D 40 (1989) 2245 [INSPIRE].

    ADS  Google Scholar 

  27. R. Ellis and S. Veseli, W and Z transverse momentum distributions: Resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Ladinsky and C. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) 4239 [hep-ph/9311341] [INSPIRE].

    ADS  Google Scholar 

  29. A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].

    ADS  Google Scholar 

  30. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  31. CDF collaboration, T. Affolder et al., The transverse momentum and total cross section of e + e pairs in the Z boson region from \( p\overline p \) collisions at \( \sqrt {s} = {1}.{8}\;TeV \), Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [INSPIRE].

    Article  ADS  Google Scholar 

  32. DØ collaboration, B. Abbott et al., Differential production cross section of Z bosons as a function of transverse momentum at \( \sqrt {s} = {1}.{8}\;TeV \), Phys. Rev. Lett. 84 (2000) 2792 [hep-ex/9909020] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  34. L.J. Dixon, Vrap: A program for computing rapidity distributions for production of lepton-pairs via virtual photons, W or Z bosons at hadron colliders at NNLO in QCD, http://www.slac.stanford.edu/∼lance/Vrap/.

  35. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  36. DØ collaboration, V. Abazov et al., Measurement of the shape of the boson transverse momentum distribution in \( p\overline p \)Z/γ∗ → e + e  + X events produced at \( \sqrt {s} = 1.96 - TeV \), Phys. Rev. Lett. 100 (2008) 102002 [arXiv:0712.0803] [INSPIRE].

    Article  ADS  Google Scholar 

  37. DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z/γ∗ → μ + μ transverse momentum distribution in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\;TeV \), Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [INSPIRE].

    ADS  Google Scholar 

  38. ATLAS collaboration, G. Aad et al., Measurement of the transverse momentum distribution of Z/γ∗ bosons in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].

    ADS  Google Scholar 

  39. M. Vesterinen and T. Wyatt, A Novel Technique for Studying the Z Boson Transverse Momentum Distribution at Hadron Colliders, Nucl. Instrum. Meth. A 602 (2009) 432 [arXiv:0807.4956] [INSPIRE].

    ADS  Google Scholar 

  40. A. Banfi, S. Redford, M. Vesterinen, P. Waller and T. Wyatt, Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, Eur. Phys. J. C 71 (2011) 1600 [arXiv:1009.1580] [INSPIRE].

    Article  ADS  Google Scholar 

  41. DØ collaboration, V.M. Abazov et al., Precise study of the Z/γ∗ boson transverse momentum distribution in \( p\overline p \) collisions using a novel technique, Phys. Rev. Lett. 106 (2011) 122001 [arXiv:1010.0262] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594] [INSPIRE].

    ADS  Google Scholar 

  43. S. Marzani, A. Banfi, M. Dasgupta and L. Tomlinson, Accurate QCD predictions for new variables to study dilepton transverse momentum, arXiv:1106.6294 [INSPIRE].

  44. R. Gonsalves, Personal home page, http://www.physics.buffalo.edu/gonsalves/.

  45. G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].

    ADS  Google Scholar 

  46. C. Balázs and C. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].

    ADS  Google Scholar 

  47. F. Landry, R. Brock, P.M. Nadolsky and C. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].

    ADS  Google Scholar 

  48. S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory, arXiv:1108.3609 [INSPIRE].

  49. M. Neubert, Renormalization-group improved calculation of the B → X s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Becher.

Additional information

ArXiv ePrint: 1109.6027

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, T., Neubert, M. & Wilhelm, D. Electroweak gauge-boson production at small q T : Infrared safety from the collinear anomaly. J. High Energ. Phys. 2012, 124 (2012). https://doi.org/10.1007/JHEP02(2012)124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)124

Keywords

Navigation