Skip to main content
Log in

The custodial Randall-Sundrum model: from precision tests to Higgs physics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry SU(2) L × SU(2) R × U(1) X × P LR in the presence of a brane-localized Higgs sector. In contrast to the existing literature, we perform the Kaluza-Klein (KK) decomposition within the mass basis, which avoids the truncation of the KK towers. Expanding the low-energy spectrum as well as the gauge couplings in powers of the Higgs vacuum expectation value, we obtain analytic formulas which allow for a deep understanding of the model-specific protection mechanisms of the T parameter and the left-handed Z-boson couplings. In particular, in the latter case we explain which contributions escape protection and identify them with the irreducible sources of P LR symmetry breaking. We furthermore show explicitly that no protection mechanism is present in the charged-current sector confirming existing model-independent findings. The main focus of the phenomenological part of our work is a detailed discussion of Higgs-boson couplings and their impact on physics at the CERN Large Hadron Collider. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels is presented, incorporating the effects stemming from the extended electroweak gauge-boson and fermion sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  5. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].

    ADS  Google Scholar 

  7. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. Y. Grossman and M. Neubert, Neutrino masses and mixings in non-factorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. S.J. Huber and Q. Sha, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].

    ADS  Google Scholar 

  11. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [SPIRES].

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [SPIRES].

    ADS  Google Scholar 

  13. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [SPIRES].

    Article  ADS  Google Scholar 

  14. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

    ADS  Google Scholar 

  15. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  16. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  17. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ∆ F=2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [SPIRES].

    Article  ADS  Google Scholar 

  18. C. Csaki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-goldstone higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].

    Article  ADS  Google Scholar 

  19. O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect Kaon CP-violation to constrain the Warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [SPIRES].

    ADS  MATH  Google Scholar 

  20. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. tree-level weak-interaction processes, arXiv:0912.1625 [SPIRES].

  21. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. M.S. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [SPIRES].

    ADS  Google Scholar 

  23. M.S. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Precision electroweak data and unification of couplings in warped extra dimensions, Phys. Rev. D 68 (2003) 035010 [hep-ph/0305188] [SPIRES].

    ADS  Google Scholar 

  24. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  25. F. Goertz and T. Pfoh, On the perturbative approach in the Randall-Sundrum model, JHEP 10 (2008) 035 [arXiv:0809.1378] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Bauer, S. Casagrande, L. Grunder, U. Haisch and M. Neubert, Little Randall-Sundrum models: ϵ K strikes again, Phys. Rev. D 79 (2009) 076001 [arXiv:0811.3678] [SPIRES].

    ADS  Google Scholar 

  27. L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [SPIRES].

    Article  ADS  Google Scholar 

  29. G. Burdman and L. Da Rold, Renormalization of the S parameter in holographic models of electroweak symmetry breaking, JHEP 11 (2008) 025 [arXiv:0809.4009] [SPIRES].

    Article  ADS  Google Scholar 

  30. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].

    Article  ADS  Google Scholar 

  31. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  32. C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [SPIRES].

    ADS  Google Scholar 

  33. A. Delgado and A. Falkowski, Electroweak observables in a general 5D background, JHEP 05 (2007) 097 [hep-ph/0702234] [SPIRES].

    Article  ADS  Google Scholar 

  34. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].

    ADS  Google Scholar 

  36. J. Hirn and V. Sanz, (Not) summing over Kaluza-Kleins, Phys. Rev. D 76 (2007) 044022 [hep-ph/0702005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNC's in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [SPIRES].

    ADS  Google Scholar 

  38. J.A. Bagger, F. Feruglio and F. Zwirner, Generalized symmetry breaking on orbifolds, Phys. Rev. Lett. 88 (2002) 101601 [hep-th/0107128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [SPIRES].

    Article  ADS  Google Scholar 

  40. K. Agashe, G. Perez and A. Soni, Collider signals of top quark flavor violation from a warped extra dimension, Phys. Rev. D 75 (2007) 015002 [hep-ph/0606293] [SPIRES].

    ADS  Google Scholar 

  41. K. Agashe and R. Contino, Composite higgs-mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [SPIRES].

    ADS  Google Scholar 

  42. B. Duling, A comparative study of contributions to ϵ K in the RS Model, JHEP 05 (2010) 109 [arXiv:0912.4208] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  43. J.H. Field, Indications for an anomalous righthanded coupling of the b-quark from a model independent analysis of LEP and SLD data on Z decays, Mod. Phys. Lett. A 13 (1998) 1937 [hep-ph/9801355] [SPIRES].

    ADS  Google Scholar 

  44. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  45. A.B. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Djouadi, G. Moreau and F. Richard, Resolving the A FB b puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [SPIRES].

    Article  ADS  Google Scholar 

  47. C. Bouchart and G. Moreau, The precision electroweak data in warped extra-dimension models, Nucl. Phys. B 810 (2009) 66 [arXiv:0807.4461] [SPIRES].

    Article  ADS  Google Scholar 

  48. Tevatron Electroweak Working Group collaboration, A combination of CDF and D0 results on the mass of the top quark, arXiv:0803.1683 [SPIRES].

  49. CDF collaboration, T. Aaltonen et al., Search for the flavor changing neutral current decay tZq in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \), Phys. Rev. Lett. 101 (2008) 192002 [arXiv:0805.2109] [SPIRES].

    Article  ADS  Google Scholar 

  50. ATLAS collaboration, J. Carvalho et al., Study of ATLAS sensitivity to FCNC top decays, Eur. Phys. J. C 52 (2007) 999 [arXiv:0712.1127] [SPIRES].

    Article  ADS  Google Scholar 

  51. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  52. J.A. Aguilar-Saavedra and G.C. Branco, Probing top flavour-changing neutral scalar couplings at the CERN LHC, Phys. Lett. B 495 (2000) 347 [hep-ph/0004190] [SPIRES].

    ADS  Google Scholar 

  53. M. Spira, HIGLU: A Program for the calculation of the Total Higgs production cross section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [SPIRES].

  54. A. Falkowski, Pseudo-goldstone higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [SPIRES].

    ADS  Google Scholar 

  55. I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [SPIRES].

    Article  ADS  Google Scholar 

  56. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the higgs boson, Nucl. Phys. B 106 (1976) 292 [SPIRES].

    ADS  Google Scholar 

  57. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [SPIRES].

    Google Scholar 

  58. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [SPIRES].

    Google Scholar 

  59. A. Pomarol, Grand Unified Theories without the Desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].

    Article  ADS  Google Scholar 

  60. W.D. Goldberger and I.Z. Rothstein, High energy field theory in truncated AdS backgrounds, Phys. Rev. Lett. 89 (2002) 131601 [hep-th/0204160] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. K. Agashe, A. Delgado and R. Sundrum, Gauge coupling renormalization in RS1, Nucl. Phys. B 643 (2002) 172 [hep-ph/0206099] [SPIRES].

    Article  ADS  Google Scholar 

  62. W.D. Goldberger and I.Z. Rothstein, Effective field theory and unification in AdS backgrounds, Phys. Rev. D 68 (2003) 125011 [hep-th/0208060] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. R. Contino, P. Creminelli and E. Trincherini, Holographic evolution of gauge couplings, JHEP 10 (2002) 029 [hep-th/0208002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. K.-w. Choi and I.-W. Kim, One loop gauge couplings in AdS 5, Phys. Rev. D 67 (2003) 045005 [hep-th/0208071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. W.D. Goldberger and I.Z. Rothstein, Systematics of coupling flows in AdS backgrounds, Phys. Rev. D 68 (2003) 125012 [hep-ph/0303158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. F. del Aguila and J. Santiago, Universality limits on bulk fermions, Phys. Lett. B 493 (2000) 175 [hep-ph/0008143] [SPIRES].

    ADS  Google Scholar 

  67. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].

    Article  ADS  Google Scholar 

  68. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].

    Article  ADS  Google Scholar 

  69. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

    Article  ADS  Google Scholar 

  70. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].

    Article  ADS  Google Scholar 

  71. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].

    ADS  Google Scholar 

  72. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].

    ADS  Google Scholar 

  73. A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].

    ADS  Google Scholar 

  74. V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].

    Article  ADS  Google Scholar 

  75. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].

    Article  ADS  Google Scholar 

  76. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [SPIRES].

    ADS  Google Scholar 

  77. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [SPIRES].

    ADS  Google Scholar 

  78. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment-detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  79. U. Aglietti et al., Tevatron for LHC report: Higgs, hep-ph/0612172 [SPIRES].

  80. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs to Gamma Gamma beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [SPIRES].

    Article  ADS  Google Scholar 

  81. J.R. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [SPIRES].

    Article  ADS  Google Scholar 

  82. A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [SPIRES].

    ADS  Google Scholar 

  83. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  84. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  85. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES] [updated results available at: http://pdglive.lbl.gov].

    ADS  Google Scholar 

  86. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [SPIRES] [updated results available at: http://ckmfitter.in2p3.fr].

    Article  ADS  Google Scholar 

  87. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Haisch.

Additional information

ArXiv ePrint: 1005.4315

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casagrande, S., Goertz, F., Haisch, U. et al. The custodial Randall-Sundrum model: from precision tests to Higgs physics. J. High Energ. Phys. 2010, 14 (2010). https://doi.org/10.1007/JHEP09(2010)014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)014

Keywords

Navigation