Skip to main content

SUSY simplified models at 14, 33, and 100 TeV proton colliders


Results are presented for a variety of SUSY Simplified Models at the 14 TeV LHC as well as a 33 and 100 TeV proton collider. Our focus is on models whose signals are driven by colored production. We present projections of the upper limit and discovery reach in the gluino-neutralino (for both light and heavy flavor decays), squark-neutralino, and gluino-squark Simplified Model planes. Depending on the model a jets + \( E_T^{\mathrm{miss}} \), mono-jet, or same-sign di-lepton search is applied. The impact of pileup is explored. This study utilizes the Snowmass backgrounds and combined detector. Assuming 3000 fb−1 of integrated luminosity, a gluino that decays to light flavor quarks can be discovered below 2.3 TeV at the 14 TeV LHC and below 11 TeV at a 100 TeV machine.


  1. J. Alwall, M.-P. Le, M. Lisanti and J.G. Wacker, Model-independent jets plus missing energy searches, Phys. Rev. D 79 (2009) 015005 [arXiv:0809.3264] [INSPIRE].

    ADS  Google Scholar 

  2. J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].

    ADS  Google Scholar 

  3. LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

    ADS  Article  Google Scholar 

  4. T. Cohen and J.G. Wacker, Here be dragons: the unexplored continents of the CMSSM, JHEP 09 (2013) 061 [arXiv:1305.2914] [INSPIRE].

    ADS  Article  Google Scholar 

  5. M. Cahill-Rowley, J. Hewett, A. Ismail and T. Rizzo, Constraints on Higgs properties and SUSY partners in the pMSSM, arXiv:1308.0297 [INSPIRE].

  6. N. Craig, The state of supersymmetry after run I of the LHC, arXiv:1309.0528 [INSPIRE].

  7. A. Avetisyan et al., Methods and results for Standard Model event generation at \( \sqrt{s} \) = 14TeV, 33 TeV and 100 TeV proton colliders (a Snowmass whitepaper), arXiv:1308.1636 [INSPIRE].

  8. A. Avetisyan et al., Snowmass energy frontier simulations using the open science grid (a Snowmass 2013 whitepaper), arXiv:1308.0843 [INSPIRE].

  9. J. Anderson et al., Snowmass energy frontier simulations, arXiv:1309.1057 [INSPIRE].

  10. J.M. Campbell et al., Report of the Snowmass 2013 energy frontier QCD working group, arXiv:1310.5189 [INSPIRE].

  11. E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super collider physics, Rev. Mod. Phys. 56 (1984) 579 [Addendum ibid. 58 (1986) 1065] [INSPIRE].

  12. K. Agashe et al., Warped extra dimensional benchmarks for Snowmass 2013, arXiv:1309.7847 [INSPIRE].

  13. A. Avetisyan and T. Bose, Search for top partners with charge 5e/3, arXiv:1309.2234 [INSPIRE].

  14. S. Bhattacharya et al., Prospects for a heavy vector-like charge 2/3 quark T search at the LHC with \( \sqrt{s} \) = 14 TeV and 33 TeV.A Snowmass 2013 whitepaper”, arXiv:1309.0026 [INSPIRE].

  15. E.W. Varnes, Vector-like B pair production at future pp colliders, arXiv:1309.0788 [INSPIRE].

  16. T. Andeen et al., Sensitivity to the single production of vector-like quarks at an upgraded Large Hadron Collider, arXiv:1309.1888 [INSPIRE].

  17. L. Apanasevich, S. Upadhyay, N. Varelas, D. Whiteson and F. Yu, Sensitivity of potential future pp colliders to quark compositeness, arXiv:1307.7149 [INSPIRE].

  18. C. Degrande et al., Studies of vector boson scattering and triboson production with DELPHES parametrized fast simulation for Snowmass 2013, arXiv:1309.7452 [INSPIRE].

  19. D. Stolarski, Reach in all hadronic stop decays: a Snowmass white paper, arXiv:1309.1514 [INSPIRE].

  20. F. Yu, Di-jet resonances at future hadron colliders: a Snowmass whitepaper, arXiv:1308.1077 [INSPIRE].

  21. N. Zhou, D. Berge, L. Wang, D. Whiteson and T. Tait, Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators, arXiv:1307.5327 [INSPIRE].

  22. T. Cohen et al., A comparison of future proton colliders using SUSY simplified models: a Snowmass whitepaper, arXiv:1310.0077 [INSPIRE].

  23. ATLAS collaboration, Searches for supersymmetry at the High Luminosity LHC with the ATLAS detector, ATL-PHYS-PUB-2013-002, CERN, Geneva Switzerland (2013).

  24. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  25. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  26. G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  27. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    ADS  Article  Google Scholar 

  28. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  29. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047, CERN, Geneva Switzerland (2013).

  30. CMS collaboration, Search for new physics in the multijets and missing momentum final state in proton-proton collisions at 8 TeV, CMS-PAS-SUS-13-012, CERN, Geneva Switzerland (2013).

  31. ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147, CERN, Geneva Switzerland (2012).

  32. CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-048, CERN, Geneva Switzerland (2012).

  33. B. Bhattacherjee, A. Choudhury, K. Ghosh and S. Poddar, Compressed SUSY at 14 TeV LHC, Phys. Rev. D 89 (2014) 037702 [arXiv:1308.1526] [INSPIRE].

    ADS  Google Scholar 

  34. H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].

    ADS  Google Scholar 

  35. G.D. Kribs and A. Martin, Dirac gauginos in supersymmetrysuppressed jets + MET signals: a Snowmass whitepaper, arXiv:1308.3468 [INSPIRE].

  36. S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Article  Google Scholar 

  37. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Article  Google Scholar 

  38. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  39. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    ADS  Article  Google Scholar 

  40. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    ADS  Article  Google Scholar 

  41. N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389] [INSPIRE].

    ADS  Google Scholar 

  42. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].

    ADS  Article  Google Scholar 

  43. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    ADS  Article  Google Scholar 

  44. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012) 075009 [arXiv:1201.1293] [INSPIRE].

    ADS  Google Scholar 

  45. G. Larsen, Y. Nomura and H.L.L. Roberts, Supersymmetry with light stops, JHEP 06 (2012) 032 [arXiv:1202.6339] [INSPIRE].

    ADS  Article  Google Scholar 

  46. T. Cohen, A. Hook and G. Torroba, An attractor for natural supersymmetry, Phys. Rev. D 86 (2012) 115005 [arXiv:1204.1337] [INSPIRE].

    ADS  Google Scholar 

  47. L. Randall and M. Reece, Single-scale natural SUSY, JHEP 08 (2013) 088 [arXiv:1206.6540] [INSPIRE].

    ADS  Article  Google Scholar 

  48. ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-061, CERN, Geneva Switzerland (2013).

  49. CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 8 TeV in events with a single lepton, large jet multiplicity and multiple b-jets, arXiv:1311.4937 [INSPIRE].

  50. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  51. W. Altmannshofer, R. Harnik and J. Zupan, Low energy probes of PeV scale Sfermions, JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE].

    ADS  Article  Google Scholar 

  52. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    ADS  Article  Google Scholar 

  53. CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 07 (2013) 041] [arXiv:1212.6194] [INSPIRE].

  54. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

    ADS  Article  Google Scholar 

  55. A. Barr, C. Lester and P. Stephens, m T2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

    ADS  Article  Google Scholar 

  56. M. Burns, K. Kong, K.T. Matchev and M. Park, Using subsystem M T2 for complete mass determinations in decay chains with missing energy at hadron colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [INSPIRE].

    ADS  Article  Google Scholar 

  57. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  58. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  59. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

    Article  Google Scholar 

  60. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  61. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Article  Google Scholar 

  62. W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Timothy Cohen.

Additional information

ArXiv ePrint: 1311.6480

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, T., Golling, T., Hance, M. et al. SUSY simplified models at 14, 33, and 100 TeV proton colliders. J. High Energ. Phys. 2014, 117 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Supersymmetry Phenomenology
  • Hadronic Colliders