Skip to main content
Log in

Low energy probes of PeV scale sfermions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, μ to e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  2. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Ibe, T. Moroi and T. Yanagida, Possible signals of wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    Article  ADS  Google Scholar 

  4. B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  6. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10-100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    ADS  Google Scholar 

  9. B.S. Acharya, G. Kane and P. Kumar, Compactified string theoriesgeneric predictions for particle physics, Int. J. Mod. Phys. A 27 (2012) 1230012 [arXiv:1204.2795] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation of supersymmetry breaking at the LHC, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].

    ADS  Google Scholar 

  11. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  13. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  15. N. Arkani-Hamed, S. Dimopoulos, G. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. N. Arkani-Hamed, H.-C. Cheng and L. Hall, A supersymmetric theory of flavor with radiative fermion masses, Phys. Rev. D 54 (1996) 2242 [hep-ph/9601262] [INSPIRE].

    ADS  Google Scholar 

  18. J.L. Diaz-Cruz, H. Murayama and A. Pierce, Can supersymmetric loops correct the fermion mass relations in SU(5)?, Physr. Rev. D 65 (2002) 075011 [hep-ph/0012275] [INSPIRE].

    ADS  Google Scholar 

  19. J. Ferrandis, Radiative mass generation and suppression of supersymmetric contributions to flavor changing processes, Phys. Rev. D 70 (2004) 055002 [hep-ph/0404068] [INSPIRE].

    ADS  Google Scholar 

  20. A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].

    ADS  Google Scholar 

  21. P.W. Graham and S. Rajendran, A domino theory of flavor, Phys. Rev. D 81 (2010) 033002 [arXiv:0906.4657] [INSPIRE].

    ADS  Google Scholar 

  22. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  23. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  24. LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].

    Google Scholar 

  25. T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].

  26. LHCb collaboration, Measurement of CP violation and the \( B_s^0 \) meson decay width difference with \( B_s^0 \)J/ψK + K and \( B_s^0 \)J/ψπ + π decays, Phys. Rev. D 87 (2013) 112010 [arXiv:1304.2600] [INSPIRE].

    Google Scholar 

  27. W. Griffith et al., Improved limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].

  29. C. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Kara et al., Measurement of the electrons electric dipole moment using YbF molecules: methods and data analysis, New J. Phys. 14 (2012) 103051 [arXiv:1208.4507] [INSPIRE].

    Article  ADS  Google Scholar 

  32. ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, arXiv:1310.7534 [INSPIRE].

  33. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].

  35. SINDRUM collaboration, U. Brellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Blondel et al., Research proposal for an experiment to search for the decay μ → 3e, arXiv:1301.6113 [INSPIRE].

  37. SINDRUM II collaboration, W.H. Bertl et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  38. Mu2e collaboration, R. Abrams et al., Mu2e conceptual design report, arXiv:1211.7019 [INSPIRE].

  39. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb−1 of data, arXiv:1107.5255 [INSPIRE].

  41. S. Bethke, The 2009 world average of α s , Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. McKeen, M. Pospelov and A. Ritz, EDM signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

    ADS  Google Scholar 

  43. T. Moroi and M. Nagai, Probing supersymmetric model with heavy sfermions using leptonic flavor and CP-violations, Phys. Lett. B 723 (2013) 107 [arXiv:1303.0668] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Moroi, M. Nagai and T.T. Yanagida, Lepton flavor violations in high-scale SUSY with right-handed neutrinos, arXiv:1305.7357 [INSPIRE].

  45. L. Eliaz, A. Giveon, S.B. Gudnason and E. Tsuk, Mild-split SUSY with flavor, JHEP 10 (2013) 136 [arXiv:1306.2956] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Sato, S. Shirai and K. Tobioka, Flavor of gluino decay in high-scale supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Dine, P. Draper and W. Shepherd, Proton decay at M pl and the scale of SUSY-breaking, arXiv:1308.0274 [INSPIRE].

  48. J. Hisano, D. Kobayashi, T. Kuwahara and N. Nagata, Decoupling can revive minimal supersymmetric SU(5), JHEP 07 (2013) 038 [arXiv:1304.3651] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].

    Article  ADS  Google Scholar 

  50. S.M. Barr, Measurable T and P odd electron-nucleon interactions from Higgs boson exchange, Phys. Rev. Lett. 68 (1992) 1822 [INSPIRE].

    Article  ADS  Google Scholar 

  51. A.S. Kronfeld et al., Project X: physics opportunities, arXiv:1306.5009 [INSPIRE].

  52. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric dipole moments of nucleons, nuclei and atoms: the Standard Model and beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: a beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [INSPIRE].

    ADS  Google Scholar 

  56. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].

    Article  ADS  Google Scholar 

  57. W. Altmannshofer, A.J. Buras and P. Paradisi, A lower bound on hadronic EDMs from CP-violation in \( \mathrm{D}0-\overline{\mathrm{D}}0 \) mixing in SUSY alignment models, Phys. Lett. B 688 (2010) 202 [arXiv:1001.3835] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g-2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].

    Article  ADS  Google Scholar 

  61. G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  62. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the Standard Model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  63. W. Altmannshofer, A.J. Buras and D. Guadagnoli, The MFV limit of the MSSM for low tan β: meson mixings revisited, JHEP 11 (2007) 065 [hep-ph/0703200] [INSPIRE].

    Article  ADS  Google Scholar 

  64. ETM collaboration, V. Bertone et al., Kaon mixing beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 07 (2013) 143] [arXiv:1207.1287] [INSPIRE].

  65. V. Lubicz and C. Tarantino, Flavour physics and lattice QCD: averages of lattice inputs for the unitarity triangle analysis, Nuovo Cim. B 123 (2008) 674 [arXiv:0807.4605] [INSPIRE].

    ADS  Google Scholar 

  66. C. Bouchard et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the Standard Model and beyond, PoS(LATTICE 2011)274 [arXiv:1112.5642] [INSPIRE].

  67. N. Carrasco et al., B-physics from N f = 2 tmQCD: the Standard Model and beyond, arXiv:1308.1851 [INSPIRE].

  68. M. Ciuchini et al., Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].

    Article  ADS  Google Scholar 

  69. A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the Standard Model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Contino and I. Scimemi, The supersymmetric flavor problem for heavy first two generation scalars at next-to-leading order, Eur. Phys. J. C 10 (1999) 347 [hep-ph/9809437] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. Kersten and L. Velasco-Sevilla, Flavour constraints on scenarios with two or three heavy squark generations, Eur. Phys. J. C 73 (2013) 2405 [arXiv:1207.3016] [INSPIRE].

    Article  ADS  Google Scholar 

  72. CDF collaboration, A. Abulencia et al., Measurement of the \( B_s^0-\overline{B}_s^0 \) oscillation frequency, Phys. Rev. Lett. 97 (2006) 062003 [hep-ex/0606027] [INSPIRE].

    Article  ADS  Google Scholar 

  73. LHCb collaboration, Precision measurement of the \( B_s^0-\overline{B}_s^0 \) oscillation frequency with the decay \( B_s^0\ \to D_s^{-}{\pi^{+}} \), New J. Phys. 15 (2013) 053021 [arXiv:1304.4741] [INSPIRE].

    Article  Google Scholar 

  74. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. de Gouvêa and P. Vogel, Lepton flavor and number conservation and physics beyond the Standard Model, Prog. Part. Nucl. Phys. 71 (2013) 75 [arXiv:1303.4097] [INSPIRE].

    Article  ADS  Google Scholar 

  76. R.H. Bernstein and P.S. Cooper, Charged lepton flavor violation: an experimenters guide, Phys. Rept. 532 (2013) 27 [arXiv:1307.5787] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric Standard Model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

    ADS  Google Scholar 

  78. E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [INSPIRE].

    ADS  Google Scholar 

  79. P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].

    Article  ADS  Google Scholar 

  80. P. Paradisi, Higgs-mediated eμ transitions in II Higgs doublet model and supersymmetry, JHEP 08 (2006) 047 [hep-ph/0601100] [INSPIRE].

    Article  ADS  Google Scholar 

  81. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  82. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: the sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    Article  ADS  Google Scholar 

  84. C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  85. A.L. Kagan, Implications of TeV flavor physics for the ΔI = 1/2 rule and BR (B), Phys. Rev. D 51 (1995) 6196 [hep-ph/9409215] [INSPIRE].

    ADS  Google Scholar 

  86. D.E. Kaplan and T.M. Tait, New tools for fermion masses from extra dimensions, JHEP 11 (2001) 051 [hep-ph/0110126] [INSPIRE].

    Article  ADS  Google Scholar 

  87. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  89. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].

    Article  ADS  Google Scholar 

  91. Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].

    Article  ADS  Google Scholar 

  92. D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].

    ADS  Google Scholar 

  93. Y. Nomura, M. Papucci and D. Stolarski, Flavorful supersymmetry, Phys. Rev. D 77 (2008) 075006 [arXiv:0712.2074] [INSPIRE].

    ADS  Google Scholar 

  94. Y. Nomura, M. Papucci and D. Stolarski, Flavorful supersymmetry from higher dimensions, JHEP 07 (2008) 055 [arXiv:0802.2582] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. V. Ben-Hamo and Y. Nir, Implications of horizontal symmetries on baryon number violation in supersymmetric models, Phys. Lett. B 339 (1994) 77 [hep-ph/9408315] [INSPIRE].

    Article  ADS  Google Scholar 

  96. A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].

    ADS  Google Scholar 

  97. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  98. V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].

    Article  ADS  Google Scholar 

  99. K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD corrections to quark (chromo)electric dipole moments in high-scale supersymmetry, arXiv:1308.6493 [INSPIRE].

  100. D. Jones, Asymptotic behavior of supersymmetric Yang-Mills theories in the two loop approximation, Nucl. Phys. B 87 (1975) 127 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jure Zupan.

Additional information

ArXiv ePrint: 1308.3653

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmannshofer, W., Harnik, R. & Zupan, J. Low energy probes of PeV scale sfermions. J. High Energ. Phys. 2013, 202 (2013). https://doi.org/10.1007/JHEP11(2013)202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)202

Keywords

Navigation