Skip to main content
Log in

Comments on holographic entanglement entropy and RG flows

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using holographic entanglement entropy for strip geometry, we construct a candidate for a c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  5. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].

    Article  MATH  Google Scholar 

  6. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  7. J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Anselmi, J. Erlich, D. Freedman and A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Barnes, K.A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d N = 2 theories, JHEP 01 (2011) 078 [arXiv:1011.4568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A.D. Shapere and Y. Tachikawa, A counterexample to the ’a-theorem’, JHEP 12 (2008) 020 [arXiv:0809.3238] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Z. Komargodski, The constraints of conformal symmetry on RG flows, arXiv:1112.4538 [INSPIRE].

  17. A. Schwimmer and S. Theisen, Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys. B 847 (2011) 590 [arXiv:1011.0696] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Dorigoni and V.S. Rychkov, Scale invariance + unitarityconformal invariance?, arXiv:0910.1087 [INSPIRE].

  20. S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D ≠ 4 teaches us about scale and conformal invariance, Nucl. Phys. B 848 (2011) 578 [arXiv:1101.5385] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Jackiw and S.-Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. I. Antoniadis and M. Buican, On R-symmetric fixed points and superconformality, Phys. Rev. D 83 (2011) 105011 [arXiv:1102.2294] [INSPIRE].

    ADS  Google Scholar 

  23. M. Buican, A conjectured bound on accidental symmetries, Phys. Rev. D 85 (2012) 025020 [arXiv:1109.3279] [INSPIRE].

    ADS  Google Scholar 

  24. Y. Nakayama, Comments on scale invariant but non-conformal supersymmetric field theories, arXiv:1109.5883 [INSPIRE].

  25. Y. Nakayama, On ǫ-conjecture in a-theorem, arXiv:1110.2586 [INSPIRE].

  26. T.L. Curtright, X. Jin and C.K. Zachos, RG flows, cycles and c-theorem folklore, Phys. Rev. Lett. 108 (2012) 131601 [arXiv:1111.2649] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.-F. Fortin, B. Grinstein and A. Stergiou, Scale without conformal invariance: an example, Phys. Lett. B 704 (2011) 74 [arXiv:1106.2540] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. J.-F. Fortin, B. Grinstein and A. Stergiou, Scale without conformal invariance: theoretical foundations, arXiv:1107.3840 [INSPIRE].

  29. J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  31. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  34. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, arXiv:1012.3210 [INSPIRE].

  37. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement entropy of 3D conformal gauge theories with many flavors, arXiv:1112.5342 [INSPIRE].

  40. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  41. L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Albash and C.V. Johnson, Holographic entanglement entropy and renormalization group flow, JHEP 02 (2012) 095 [arXiv:1110.1074] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].

  44. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973).

    Book  MATH  Google Scholar 

  45. M. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. C. Fefferman and C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques d’aujourd hui, Astérisque (1985) 95.

  49. C. Fefferman and C.R. Graham, The ambient metric, arXiv:0710.0919.

  50. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. M. Blau, K. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D. Lovelock, Divergence-free tensorial concomitants, Aequationes Math. 4 (1970) 127.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  57. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [INSPIRE].

    Article  ADS  Google Scholar 

  61. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [INSPIRE].

    ADS  Google Scholar 

  62. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [INSPIRE].

    ADS  Google Scholar 

  63. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

    Article  Google Scholar 

  64. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].

    Article  ADS  Google Scholar 

  65. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].

    Article  ADS  Google Scholar 

  66. R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha, et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  Google Scholar 

  69. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, arXiv:1012.3382 [INSPIRE].

  74. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, JHEP 05 (2011) 043 [arXiv:1101.5993] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. R.V. Buniy, S.D. Hsu and B.M. Murray, The null energy condition and instability, Phys. Rev. D 74 (2006) 063518 [hep-th/0606091] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  77. S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  81. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  83. T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  86. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  87. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  88. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  91. M.F. Paulos, New massive gravity extended with an arbitrary number of curvature corrections, Phys. Rev. D 82 (2010) 084042 [arXiv:1005.1646] [INSPIRE].

    ADS  Google Scholar 

  92. I. Gullu, T.C. Sisman and B. Tekin, c-functions in the Born-Infeld extended new massive gravity, Phys. Rev. D 82 (2010) 024032 [arXiv:1005.3214] [INSPIRE].

    ADS  Google Scholar 

  93. T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. T. Albash and C.V. Johnson, Holographic studies of entanglement entropy in superconductors, arXiv:1202.2605 [INSPIRE].

  97. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  98. K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  99. O. DeWolfe, D. Freedman, S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  100. I. Low and A. Zee, Naked singularity and Gauss-Bonnet term in brane world scenarios, Nucl. Phys. B 585 (2000) 395 [hep-th/0004124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. U. Camara and G. Sotkov, New massive gravity domain walls, Phys. Lett. B 694 (2010) 94 [arXiv:1008.2553] [INSPIRE].

    ADS  Google Scholar 

  102. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. E. Gava, P. Karndumri and K. Narain, AdS 3 vacua and RG flows in three dimensional gauged supergravities, JHEP 04 (2010) 117 [arXiv:1002.3760] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  104. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  105. P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  107. L. Mezincescu and P. Townsend, Stability at a local maximum in higher dimensional Anti-de Sitter space and applications to supergravity, Annals Phys. 160 (1985) 406 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  108. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  109. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4d CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  111. V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  112. D. Poland and D. Simmons-Duffin, Bounds on 4d conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Singh.

Additional information

ArXiv ePrint: 1202.2068v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, R.C., Singh, A. Comments on holographic entanglement entropy and RG flows. J. High Energ. Phys. 2012, 122 (2012). https://doi.org/10.1007/JHEP04(2012)122

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)122

Keywords

Navigation