Skip to main content
Log in

On holographic entanglement entropy and higher curvature gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine holographic entanglement entropy with higher curvature gravity in the bulk. We show that in general Wald’s formula for horizon entropy does not yield the correct entanglement entropy. However, for Lovelock gravity, there is an alternate prescription which involves only the intrinsic curvature of the bulk surface. We verify that this prescription correctly reproduces the universal contribution to the entanglement entropy for CFT’s in four and six dimensions. We also make further comments on gravitational theories with more general higher curvature interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [SPIRES].

    MathSciNet  Google Scholar 

  4. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].

    ADS  Google Scholar 

  5. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Calabrese and J .L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  7. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: A non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [SPIRES].

    Article  MATH  Google Scholar 

  8. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, arXiv:1102.0440 [SPIRES].

  13. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. Lovelock, Divergence-free tensorial concomitants, Aequationes Math. 4 (1970) 127.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. M. Kulaxizi, Higher Derivative Gravity and Entanglement Entropy, talk presented at Crete Conference On Gauge Theories And The Structure Of Spacetime, Kolymvari Crete, 11–18 September 2010, http://hep.physics.uoc.gr/conf09/.

  21. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock Gravities, arXiv:1101.5781 [SPIRES].

  22. J.-R. Sun, Note on Chern-Simons Term Correction to Holographic Entanglement Entropy, JHEP 05 (2009) 061 [arXiv:0810.0967] [SPIRES].

    Article  ADS  Google Scholar 

  23. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock Gravities and Black Holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].

    Article  Google Scholar 

  24. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. Q. Exirifard and M.M. Sheikh-Jabbari, Lovelock Gravity at the Crossroads of Palatini and Metric Formulations, Phys. Lett. B 661 (2008) 158 [arXiv:0705.1879] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. J.T. Wheeler, Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 268 (1986) 737 [SPIRES].

    Article  ADS  Google Scholar 

  27. J.T. Wheeler, Symmetric Solutions To The Maximally Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 273 (1986) 732 [SPIRES].

    Article  ADS  Google Scholar 

  28. R.C. Myers and J.Z. Simon, Black Hole Thermodynamics in Lovelock Gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. R.C. Myers and J.Z. Simon, Black Hole Evaporation and Higher Derivative Gravity, Gen. Rel. Grav. 21 (1989) 761 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. T.S. Bunch, Surface terms in higher derivative gravity, J. Phys. A 14 (1981) L139.

    MathSciNet  ADS  Google Scholar 

  31. R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36 (1987) 392 [SPIRES].

    ADS  Google Scholar 

  32. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, arXiv:1010.1682 [SPIRES].

  34. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  35. S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. Y.M. Cho and I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity, Phys. Rev. D 66 (2002) 024044 [hep-th/0202140] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. I.P. Neupane, Black hole entropy in string-generated gravity models, Phys. Rev. D 67 (2003) 061501 [hep-th/0212092] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. I.P. Neupane, Thermodynamic and gravitational instability on hyperbolic spaces, Phys. Rev. D 69 (2004) 084011 [hep-th/0302132] [SPIRES].

    ADS  Google Scholar 

  39. R.-G. Cai, A note on thermodynamics of black holes in Lovelock gravity, Phys. Lett. B 582 (2004) 237 [hep-th/0311240] [SPIRES].

    ADS  Google Scholar 

  40. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  41. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Buchel and R.C. Myers, Causality of Holographic Hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

    Article  ADS  Google Scholar 

  45. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  46. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  47. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    Article  ADS  Google Scholar 

  48. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  49. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  50. J.T. Liu, W. Sabra and Z. Zhao, Holographic c-theorems and higher derivative gravity, arXiv:1012.3382 [SPIRES].

  51. D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  52. R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].

    ADS  Google Scholar 

  61. I. Racz and R.M. Wald, Extension of space-times with Killing horizon, Class. Quant. Grav. 9 (1992) 2643 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco U.S.A. (1973).

  63. M.J. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334 [SPIRES].

    Article  ADS  Google Scholar 

  64. M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. C. Fefferman and C.R. Graham, Conformal Invariants, in Elie Cartan et les Mathématiques d’aujourdhui, A sté risque (1985) pg. 95.

  67. C. Fefferman and C.R. Graham, The Ambient Metric, arXiv:0710.0919.

  68. F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2, 0) tensor multiplet in six dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. M.F. Paulos, Holographic phase space: c-functions and black holes as renormalization group flows, arXiv:1101.5993 [SPIRES].

  70. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s =1/ 4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  73. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. A. Buchel, M.P. Heller and R.C. Myers, sQGP as hCFT, Phys. Lett. B 680 (2009) 521 [arXiv:0908.2802] [SPIRES].

    ADS  Google Scholar 

  75. D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop β-function for the N =1 and N =2 Supersymmetric Nonlinear σ-model in Two-Dimensions, Phys. Lett. B 173 (1986) 423 [SPIRES].

    ADS  Google Scholar 

  77. A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].

    ADS  Google Scholar 

  78. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  79. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Universality of the operator product expansions of SCFT(4), Phys. Lett. B 394 (1997) 329 [hep-th/9608125] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. Q.J. Ejaz, T. Faulkner, H. Liu, K. Rajagopal and U.A. Wiedemann, A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT, JHEP 04 (2008) 089 [arXiv:0712.0590] [SPIRES].

    Article  Google Scholar 

  82. R. Lohmayer, H. Neuberger, A. Schwimmer and S. Theisen, Numerical determination of entanglement entropy for a sphere, Phys. Lett. B 685 (2010) 222 [arXiv:0911.4283] [SPIRES].

    ADS  Google Scholar 

  83. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  85. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  88. L.-Y. Hung, R.C. Myers and M. Smolkin, Some Calculable Contributions to Holographic Entanglement Entropy, in preparation.

  89. M.H. Dehghani and Z. Dayyani, Lorentzian wormholes in Lovelock gravity, Phys. Rev. D 79 (2009) 064010 [arXiv:0903.4262] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Smolkin.

Additional information

ArXiv ePrint:1101.5813

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, LY., Myers, R.C. & Smolkin, M. On holographic entanglement entropy and higher curvature gravity. J. High Energ. Phys. 2011, 25 (2011). https://doi.org/10.1007/JHEP04(2011)025

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)025

Keywords

Navigation