Skip to main content
Log in

Holographic entanglement entropy and renormalization group flow

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using holography, we study the entanglement entropy of strongly coupled field theories perturbed by operators that trigger an RG flow from a conformal field theory in the ultraviolet (UV) to a new theory in the infrared (IR). The holographic duals of such flows involve a geometry that has the UV and IR regions separated by a transitional structure in the form of a domain wall. We address the question of how the geometric approach to computing the entanglement entropy organizes the field theory data, exposing key features as the change in degrees of freedom across the flow, how the domain wall acts as a UV region for the IR theory, and a new area law controlled by the domain wall. Using a simple but robust model we uncover this organization, and expect much of it to persist in a wide range of holographic RG flow examples. We test our formulae in two known examples of RG flow in 3+1 and 2+1 dimensions that connect non-trivial fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncriticalstring theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  9. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  11. S.N. Solodukhin, Entanglement entropy of black holes and AdS/CFT correspondence, Phys. Rev. Lett. 97 (2006) 201601 [hep-th/0606205] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. H. Casini, M. Huerta and L. Leitao, Entanglement entropy for a Dirac fermion in three dimensions: vertex contribution, Nucl. Phys. B 814 (2009) 594 [arXiv:0811.1968] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].

    MathSciNet  Google Scholar 

  20. A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  22. A. Karch, D. Lüst and A. Miemiec, New N = 1 superconformal field theories and their supergravity description, Phys. Lett. B 454 (1999) 265 [hep-th/9901041] [INSPIRE].

    ADS  Google Scholar 

  23. R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P.C. Argyres, K.A. Intriligator, R.G. Leigh and M.J. Strassler, On inherited duality in N = 1 D = 4 supersymmetric gauge theories, JHEP 04 (2000) 029 [hep-th/9910250] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

    MathSciNet  Google Scholar 

  28. C.V. Johnson, K.J. Lovis and D.C. Page, The Kähler structure of supersymmetric holographic RG flows, JHEP 10 (2001) 014 [hep-th/0107261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. H. Nicolai and N. Warner, The SU(3) × U(1) invariant breaking of gauged N = 8 supergravity, Nucl. Phys. B 259 (1985) 412 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tameem Albash.

Additional information

ArXiv ePrint: 1110.1074

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albash, T., Johnson, C.V. Holographic entanglement entropy and renormalization group flow. J. High Energ. Phys. 2012, 95 (2012). https://doi.org/10.1007/JHEP02(2012)095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)095

Keywords

Navigation