Skip to main content
Log in

Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the relation between positivity of the energy constraints in conformal field theories and causality in their dual gravity description. Our discussion involves CFTs with different central charges whose description, in the gravity side, requires the inclusion of quadratic curvature corrections. It is enough, indeed, to consider the Gauss-Bonnet term. We find that both sides of the AdS/CFT correspondence impose a restriction on the Gauss-Bonnet coupling. In the case of 6d supersymmetric CFTs, we show the full matching of these restrictions. We perform this computation in two ways. First by considering a thermal setup in a black hole background. Second by scrutinizing the scattering of gravitons with a shock wave in AdS. The different helicities provide the corresponding lower and upper bounds. We generalize these results to arbitrary higher dimensions and comment on some hints and puzzles they prompt regarding the possible existence of higher dimensional CFTs and the extent to which the AdS/CFT correspondence would be valid for them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. I.R. Klebanov, Testing the AdS/CFT Correspondence, AIP Conf. Proc. 1031 (2008) 3.

    Article  ADS  Google Scholar 

  3. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  4. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Electron - Positron Annihilation Energy Pattern in Quantum Chromodynamics: Asymptotically Free Perturbation Theory, Phys. Rev. D 17 (1978) 2298 [SPIRES].

    ADS  Google Scholar 

  5. C.L. Basham, L.S. Brown, S.D. Ellis and S.T. Love, Energy Correlations in electron - Positron Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978) 1585 [SPIRES].

    Article  ADS  Google Scholar 

  6. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).

    MATH  Google Scholar 

  7. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  10. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  11. I.P. Neupane and N. Dadhich, Entropy bound and causality violation in higher curvature gravity, Class. Quant. Grav. 26 (2009) 015013.

    Article  MathSciNet  ADS  Google Scholar 

  12. I.P. Neupane, Black Holes, Entropy Bound and Causality Violation, Int. J. Mod. Phys. A 24 (2009) 3584 [arXiv:0904.4805] [SPIRES].

    ADS  Google Scholar 

  13. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Buchel, R.C. Myers and A. Sinha, Beyond eta/s = 1/4pi, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  15. D.M. Hofman and J. Maldacena, private communication (2008).

  16. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  17. A. Buchel and R.C. Myers, Causality of Holographic Hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  ADS  Google Scholar 

  18. D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Witten, Some comments on string dynamics, hep-th/9507121 [SPIRES].

  20. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, arXiv:0910.5347 [SPIRES].

  22. E. Witten, Conformal Field Theory In Four And Six Dimensions, arXiv:0712.0157 [SPIRES].

  23. C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP 05 (1999) 011 [hep-th/9903210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [SPIRES].

  25. J.D. Edelstein and C. Núñez, D6 branes and M-theory geometrical transitions from gauged supergravity, JHEP 04 (2001) 028 [hep-th/0103167] [SPIRES].

    Article  ADS  Google Scholar 

  26. H. Osborn and A.C. Petkou, Implications of Conformal Invariance in Field Theories for General Dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. L. Bonora, P. Pasti and M. Bregola, Weyl COCYCLES, Class. Quant. Grav. 3 (1986) 635 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A.H. Chamseddine, Topological gauge theory of gravity in five-dimensions and all odd dimensions, Phys. Lett. B 233 (1989) 291 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (February 2008), hep-th/0502193 [SPIRES].

  31. D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  32. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  33. R.C. Myers and J.Z. Simon, Black Hole Thermodynamics in Lovelock Gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [hep-th/0109122] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in deSitter and anti-deSitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [SPIRES].

    Article  ADS  Google Scholar 

  36. G. Kofinas and R. Olea, Vacuum energy in Einstein-Gauss-Bonnet AdS gravity, Phys. Rev. D 74 (2006) 084035 [hep-th/0606253] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. M. Bañados, C. Teitelboim and J. Zanelli, Dimensionally continued black holes, Phys. Rev. D 49 (1994) 975 [gr-qc/9307033] [SPIRES].

    ADS  Google Scholar 

  38. C. Garraffo and G. Giribet, The Lovelock Black Holes, Mod. Phys. Lett. A 23 (2008) 1801 [arXiv:0805.3575] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019 [hep-th/0611122] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

    Article  ADS  Google Scholar 

  42. W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [SPIRES].

    Article  ADS  Google Scholar 

  43. J.W. van Holten and A. Van Proeyen, N = 1 Supersymmetry Algebras in D = 2, D = 3, D = 4 MOD-8, J. Phys. A 15 (1982) 3763 [SPIRES].

    ADS  Google Scholar 

  44. R. Troncoso and J. Zanelli, New gauge supergravity in seven and eleven dimensions, Phys. Rev. D 58 (1998) 101703 [hep-th/9710180] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, arXiv:0911.4257 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Edelstein.

Additional information

ArXiv ePrint: 0911.3160

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camanho, X.O., Edelstein, J.D. Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity. J. High Energ. Phys. 2010, 7 (2010). https://doi.org/10.1007/JHEP04(2010)007

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)007

Keywords

Navigation