Abstract
Upcoming Lepton Flavour Violation experiments searching for μ → 3e and μ to e conversion in nuclei processes will provide new opportunities to test the fundamental properties of the neutrino sector, and possibly the origin of matter. In recent work, it was shown that the Type II Seesaw mechanism alone can simultaneously explain the neutrino masses, Leptogenesis, and inflation. A key prediction of this model was the possibility of signals being produced in Lepton Flavour Violation decays. Searches at future experiments such as Mu3e and COMET will be integral to determining the properties of the associated triplet Higgs, and will complement other terrestrial experimental searches and cosmological measurements. In this work, we survey the detection prospects for the ingredients of the Type II Seesaw Leptogenesis scenario, and discuss the corresponding dependencies on the neutrino oscillation parameters and \( \mathcal{CP} \) phases.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, in Seesaw 25, World Scientific (2005), pp. 261–264 [DOI].
S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].
T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].
R.N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
C.H. Albright and S.M. Barr, Leptogenesis in the type III seesaw mechanism, Phys. Rev. D 69 (2004) 073010 [hep-ph/0312224] [INSPIRE].
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
A. Sugamoto, The neutrino mass and the monopole — Anti-monopole dumb-bell system in the SO(10) grand unified model, Phys. Lett. B 127 (1983) 75 [INSPIRE].
E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].
I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].
H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis by right-handed sneutrinos, Phys. Rev. Lett. 70 (1993) 1912 [INSPIRE].
H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev. D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].
N.D. Barrie, C. Han and H. Murayama, Affleck-Dine Leptogenesis from Higgs Inflation, Phys. Rev. Lett. 128 (2022) 141801 [arXiv:2106.03381] [INSPIRE].
N.D. Barrie, C. Han and H. Murayama, Type II Seesaw leptogenesis, JHEP 05 (2022) 160 [arXiv:2204.08202] [INSPIRE].
C. Han, S. Huang and Z. Lei, Vacuum stability of the type II seesaw leptogenesis from inflation, arXiv:2208.11336 [INSPIRE].
D.N. Dinh, A. Ibarra, E. Molinaro and S.T. Petcov, The μ − e Conversion in Nuclei, μ → eγ, μ → 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125 [arXiv:1205.4671] [INSPIRE].
C. Han, D. Huang, J. Tang and Y. Zhang, Probing the doubly charged Higgs boson with a muonium to antimuonium conversion experiment, Phys. Rev. D 103 (2021) 055023 [arXiv:2102.00758] [INSPIRE].
A.-K. Perrevoort, Sensitivity Studies on New Physics in the Mu3e Experiment and Development of Firmware for the Front-End of the Mu3e Pixel Detector, Ph.D. Thesis, Ruprecht-Karls-Universität Heidelberg, Hedelberg, Germany (2018) [DOI] [INSPIRE].
COMET collaboration, Search for Muon-to-Electron Conversion with the COMET Experiment, Universe 8 (2022) 196 [arXiv:2203.06365] [INSPIRE].
P.S.B. Dev, M.J. Ramsey-Musolf and Y. Zhang, Doubly-Charged Scalars in the Type-II Seesaw Mechanism: Fundamental Symmetry Tests and High-Energy Searches, Phys. Rev. D 98 (2018) 055013 [arXiv:1806.08499] [INSPIRE].
P.S. Bhupal Dev and Y. Zhang, Displaced vertex signatures of doubly charged scalars in the type-II seesaw and its left-right extensions, JHEP 10 (2018) 199 [arXiv:1808.00943] [INSPIRE].
S. Ashanujjaman and K. Ghosh, Revisiting type-II see-saw: present limits and future prospects at LHC, JHEP 03 (2022) 195 [arXiv:2108.10952] [INSPIRE].
S. Chongdar and S. Mishra, Scalar Triplet Leptogenesis with a CP violating phase, arXiv:2112.11838 [INSPIRE].
P.S.B. Dev, B. Dutta, T. Ghosh, T. Han, H. Qin and Y. Zhang, Leptonic scalars and collider signatures in a UV-complete model, JHEP 03 (2022) 068 [arXiv:2109.04490] [INSPIRE].
S. Mandal, O.G. Miranda, G. Sanchez Garcia, J.W.F. Valle and X.-J. Xu, Toward deconstructing the simplest seesaw mechanism, Phys. Rev. D 105 (2022) 095020 [arXiv:2203.06362] [INSPIRE].
Y. Cheng, X.-G. He, Z.-L. Huang and M.-W. Li, Type-II seesaw triplet scalar effects on neutrino trident scattering, Phys. Lett. B 831 (2022) 137218 [arXiv:2204.05031] [INSPIRE].
S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].
ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].
Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Violent Preheating in Inflation with Nonminimal Coupling, JCAP 02 (2017) 045 [arXiv:1609.05209] [INSPIRE].
M.P. DeCross, D.I. Kaiser, A. Prabhu, C. Prescod-Weinstein and E.I. Sfakianakis, Preheating after Multifield Inflation with Nonminimal Couplings, I: Covariant Formalism and Attractor Behavior, Phys. Rev. D 97 (2018) 023526 [arXiv:1510.08553] [INSPIRE].
M.P. DeCross, D.I. Kaiser, A. Prabhu, C. Prescod-Weinstein and E.I. Sfakianakis, Preheating after multifield inflation with nonminimal couplings, III: Dynamical spacetime results, Phys. Rev. D 97 (2018) 023528 [arXiv:1610.08916] [INSPIRE].
M.P. DeCross, D.I. Kaiser, A. Prabhu, C. Prescod-Weinstein and E.I. Sfakianakis, Preheating after multifield inflation with nonminimal couplings, II: Resonance Structure, Phys. Rev. D 97 (2018) 023527 [arXiv:1610.08868] [INSPIRE].
E.I. Sfakianakis and J. van de Vis, Preheating after Higgs Inflation: Self-Resonance and Gauge boson production, Phys. Rev. D 99 (2019) 083519 [arXiv:1810.01304] [INSPIRE].
Y. Ema, R. Jinno, K. Nakayama and J. van de Vis, Preheating from target space curvature and unitarity violation: Analysis in field space, Phys. Rev. D 103 (2021) 103536 [arXiv:2102.12501] [INSPIRE].
R. Brout, F. Englert and E. Gunzig, The Creation of the Universe as a Quantum Phenomenon, Annals Phys. 115 (1978) 78 [INSPIRE].
K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].
A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].
A. Albrecht, P.J. Steinhardt, M.S. Turner and F. Wilczek, Reheating an Inflationary Universe, Phys. Rev. Lett. 48 (1982) 1437 [INSPIRE].
A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
B. Whitt, Fourth Order Gravity as General Relativity Plus Matter, Phys. Lett. B 145 (1984) 176 [INSPIRE].
A. Jakubiec and J. Kijowski, On Theories of Gravitation With Nonlinear Lagrangians, Phys. Rev. D 37 (1988) 1406 [INSPIRE].
K.-i. Maeda, Towards the Einstein-Hilbert Action via Conformal Transformation, Phys. Rev. D 39 (1989) 3159 [INSPIRE].
J.D. Barrow and S. Cotsakis, Inflation and the Conformal Structure of Higher Order Gravity Theories, Phys. Lett. B 214 (1988) 515 [INSPIRE].
T. Faulkner, M. Tegmark, E.F. Bunn and Y. Mao, Constraining f(R) Gravity as a Scalar Tensor Theory, Phys. Rev. D 76 (2007) 063505 [astro-ph/0612569] [INSPIRE].
F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
J. Garcia-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].
J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].
A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].
F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].
G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].
F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].
C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].
F.L. Bezrukov and D.S. Gorbunov, Distinguishing between R2-inflation and Higgs-inflation, Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397] [INSPIRE].
M.P. Hertzberg and J. Karouby, Generating the Observed Baryon Asymmetry from the Inflaton Field, Phys. Rev. D 89 (2014) 063523 [arXiv:1309.0010] [INSPIRE].
K.D. Lozanov and M.A. Amin, End of inflation, oscillons, and matter-antimatter asymmetry, Phys. Rev. D 90 (2014) 083528 [arXiv:1408.1811] [INSPIRE].
M. Yamada, Affleck-Dine baryogenesis just after inflation, Phys. Rev. D 93 (2016) 083516 [arXiv:1511.05974] [INSPIRE].
K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi and K. Yamashita, Ratchet baryogenesis and an analogy with the forced pendulum, Mod. Phys. Lett. A 33 (2018) 1850097 [arXiv:1610.03268] [INSPIRE].
K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi and K. Yamashita, Pendulum Leptogenesis, Phys. Lett. B 785 (2018) 184 [arXiv:1805.04826] [INSPIRE].
J.M. Cline, M. Puel and T. Toma, Affleck-Dine inflation, Phys. Rev. D 101 (2020) 043014 [arXiv:1909.12300] [INSPIRE].
N.D. Barrie, A. Sugamoto, T. Takeuchi and K. Yamashita, Higgs Inflation, Vacuum Stability, and Leptogenesis, JHEP 08 (2020) 072 [arXiv:2001.07032] [INSPIRE].
C.-M. Lin and K. Kohri, Inflaton as the Affleck-Dine Baryogenesis Field in Hilltop Supernatural Inflation, Phys. Rev. D 102 (2020) 043511 [arXiv:2003.13963] [INSPIRE].
M. Kawasaki and S. Ueda, Affleck-Dine inflation in supergravity, JCAP 04 (2021) 049 [arXiv:2011.10397] [INSPIRE].
A. Kusenko, L. Pearce and L. Yang, Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry, Phys. Rev. Lett. 114 (2015) 061302 [arXiv:1410.0722] [INSPIRE].
Y.-P. Wu, L. Yang and A. Kusenko, Leptogenesis from spontaneous symmetry breaking during inflation, JHEP 12 (2019) 088 [arXiv:1905.10537] [INSPIRE].
Y.-Y. Charng, D.-S. Lee, C.N. Leung and K.-W. Ng, Affleck-Dine Baryogenesis, Split Supersymmetry, and Inflation, Phys. Rev. D 80 (2009) 063519 [arXiv:0802.1328] [INSPIRE].
J.G. Ferreira, C.A. de S. Pires, J.G. Rodrigues and P.S. Rodrigues da Silva, Inflation scenario driven by a low energy physics inflaton, Phys. Rev. D 96 (2017) 103504 [arXiv:1707.01049] [INSPIRE].
J.G. Rodrigues, M. Benetti, M. Campista and J. Alcaniz, Probing the Seesaw Mechanism with Cosmological data, JCAP 07 (2020) 007 [arXiv:2002.05154] [INSPIRE].
S.M. Lee, K.-y. Oda and S.C. Park, Spontaneous Leptogenesis in Higgs Inflation, JHEP 03 (2021) 083 [arXiv:2010.07563] [INSPIRE].
S. Enomoto, C. Cai, Z.-H. Yu and H.-H. Zhang, Leptogenesis due to oscillating Higgs field, Eur. Phys. J. C 80 (2020) 1098 [arXiv:2005.08037] [INSPIRE].
R.N. Mohapatra and N. Okada, Affleck-Dine baryogenesis with observable neutron-antineutron oscillation, Phys. Rev. D 104 (2021) 055030 [arXiv:2107.01514] [INSPIRE].
R.N. Mohapatra and N. Okada, Neutrino mass from Affleck-Dine leptogenesis and WIMP dark matter, JHEP 03 (2022) 092 [arXiv:2201.06151] [INSPIRE].
O. Lebedev and H.M. Lee, Higgs Portal Inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].
H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev. D 98 (2018) 015020 [arXiv:1802.06174] [INSPIRE].
S.-M. Choi, Y.-J. Kang, H.M. Lee and K. Yamashita, Unitary inflaton as decaying dark matter, JHEP 05 (2019) 060 [arXiv:1902.03781] [INSPIRE].
Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic and Y. Zhang, Type II Seesaw at LHC: The Roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].
J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].
G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
O. Lebedev and A. Westphal, Metastable Electroweak Vacuum: Implications for Inflation, Phys. Lett. B 719 (2013) 415 [arXiv:1210.6987] [INSPIRE].
A. Salvio, Higgs Inflation at NNLO after the Boson Discovery, Phys. Lett. B 727 (2013) 234 [arXiv:1308.2244] [INSPIRE].
V. Branchina, E. Messina and A. Platania, Top mass determination, Higgs inflation, and vacuum stability, JHEP 09 (2014) 182 [arXiv:1407.4112] [INSPIRE].
F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].
C. Bonilla, R.M. Fonseca and J.W.F. Valle, Consistency of the triplet seesaw model revisited, Phys. Rev. D 92 (2015) 075028 [arXiv:1508.02323] [INSPIRE].
G. Moultaka and M.C. Peyranère, Vacuum stability conditions for Higgs potentials with SU(2)L triplets, Phys. Rev. D 103 (2021) 115006 [arXiv:2012.13947] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].
P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, Implications of the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].
MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
SINDRUM collaboration, Search for the Decay μ+ → e+e+e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE].
Mu3e collaboration, The Rare and Forbidden: Testing Physics Beyond the Standard Model with Mu3e, SciPost Phys. Proc. 1 (2019) 052 [arXiv:1812.00741] [INSPIRE].
M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μ → eγ: An Effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].
SINDRUM II collaboration, Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].
COMET collaboration, COMET — A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration, arXiv:1812.07824 [INSPIRE].
Y. Du, A. Dunbrack, M.J. Ramsey-Musolf and J.-H. Yu, Type-II Seesaw Scalar Triplet Model at a 100 TeV pp Collider: Discovery and Higgs Portal Coupling Determination, JHEP 01 (2019) 101 [arXiv:1810.09450] [INSPIRE].
J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [INSPIRE].
M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].
A.G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays τ → \( \overline{l} ll \) and μ → eγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].
BaBar collaboration, Searches for Lepton Flavor Violation in the Decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
D.N. Dinh and S.T. Petcov, Lepton Flavor Violating τ Decays in TeV Scale Type I See-Saw and Higgs Triplet Models, JHEP 09 (2013) 086 [arXiv:1308.4311] [INSPIRE].
Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [arXiv:1808.10567] [INSPIRE].
Belle-II collaboration, Snowmass Whitepaper: The Belle II Detector Upgrade Program, in 2022 Snowmass Summer Study, Seattle U.S.A, July 17–26 (2022) [arXiv:2203.11349] [INSPIRE].
D.G. Figueroa and F. Torrenti, Gravitational wave production from preheating: parameter dependence, JCAP 10 (2017) 057 [arXiv:1707.04533] [INSPIRE].
C. Caprini and D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35 (2018) 163001 [arXiv:1801.04268] [INSPIRE].
M. Hazumi et al., LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection, J. Low Temp. Phys. 194 (2019) 443 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.02110
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Barrie, N.D., Petcov, S.T. Lepton Flavour Violation tests of Type II Seesaw Leptogenesis. J. High Energ. Phys. 2023, 1 (2023). https://doi.org/10.1007/JHEP01(2023)001
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2023)001