Skip to main content
Log in

The μe conversion in nuclei, μ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a detailed analysis of lepton flavour violation (LFV) within minimal see-saw type extensions of the Standard Model (SM), which give a viable mechanism of neutrino mass generation and provide new particle content at the electroweak scale. We focus, mainly, on predictions and constraints set on each scenario from μeγ, μ → 3e and μe conversion in the nuclei. In this class of models, the flavour structure of the Yukawa couplings between the additional scalar and fermion representations and the SM leptons is highly constrained by neutrino oscillation measurements. In particular, we show that in some regions of the parameters space of type I and type II see-saw models, the Dirac and Majorana phases of the neutrino mixing matrix, the ordering and hierarchy of the active neutrino mass spectrum as well as the value of the reactor mixing angle θ 13 may considerably affect the size of the LFV observables. The interplay of the latter clearly allows to discriminate among the different low energy see-saw possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  2. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  3. SNO collaboration, Q. Ahmad et al., Measurement of the rate of ν e + dp + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Super-Kamiokande collaboration, S. Fukuda et al., Solar 8 B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett. 86 (2001) 5651 [hep-ex/0103032] [INSPIRE].

    Article  ADS  Google Scholar 

  5. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  7. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  8. MINOS collaboration, P. Adamson et al., Search for the disappearance of muon antineutrinos in the NuMI neutrino beam, Phys. Rev. D 84 (2011) 071103 [arXiv:1108.1509] [INSPIRE].

    ADS  Google Scholar 

  9. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G.L. Fogli et al., Evidence of θ 13> 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  11. T. Schwetz, M. Tórtola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  12. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  13. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from 235 U thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].

    ADS  Google Scholar 

  15. A.K. Alok, A. Dighe and D. London, Constraints on the four-generation quark mixing matrix from a fit to flavor-physics data, Phys. Rev. D 83 (2011) 073008 [arXiv:1011.2634] [INSPIRE].

    ADS  Google Scholar 

  16. J. Bernabéu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, θ 13 and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Palomares-Ruiz and S. Petcov, Three-neutrino oscillations of atmospheric neutrinos, θ 13 , neutrino mass hierarchy and iron magnetized detectors, Nucl. Phys. B 712 (2005) 392 [hep-ph/0406096] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.T. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Gandhi et al., Mass hierarchy determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [INSPIRE].

    ADS  Google Scholar 

  20. S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].

    ADS  Google Scholar 

  21. S. Choubey, S. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [INSPIRE].

    ADS  Google Scholar 

  22. P. Ghoshal and S. Petcov, Neutrino mass hierarchy determination using reactor antineutrinos, JHEP 03 (2011) 058 [arXiv:1011.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum and the \( \left| {\left\langle m \right\rangle } \right| \sim {10^{{ - 3}}} \) eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [INSPIRE].

    ADS  Google Scholar 

  24. S. Pascoli, S. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [INSPIRE].

    ADS  Google Scholar 

  25. S. Pascoli, S. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].

    Article  ADS  Google Scholar 

  26. E. Molinaro and S. Petcov, A case of subdominant/suppressedhigh energycontribution to the baryon asymmetry of the universe in flavoured leptogenesis, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534] [INSPIRE].

    ADS  Google Scholar 

  27. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  28. SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  29. SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].

    ADS  Google Scholar 

  30. BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Raidal, A. Strumia and K. Turzynski, Low-scale standard supersymmetric leptogenesis, Phys. Lett. B 609 (2005) 351 [Erratum ibid. B 632 (2006) 752] [hep-ph/0408015] [INSPIRE].

    ADS  Google Scholar 

  32. M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  34. M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Google Scholar 

  36. R. Akhmetshin et al., Letter of Intent for phase-I of the COMET experiment at J-PARC, http://j-parc.jp/researcher/Hadron/en/pac1203/pdf/COMET-PhaseI-LoI.pdf, Japan March 11 2012.

  37. Mu2e: muon-to-electron-conversion experiment webpage, http://mu2e.fnal.gov/.

  38. PRIME Working Group collaboration, Y. Mori et al., An experimental search for μ e conversion process at an ultimate sensitivity of the order of 10−18 with PRISM, LOI-25, Letters of Intent for Nuclear and Particle Physics Experiments at the J-PARC, KEK, Tsukuba Japan (2003).

  39. Project X: a proposed proton accelerator complex at Fermilab webpage, http://projectx.fnal.gov/.

  40. Y. Kuno, private communication.

  41. SuperKEKB Physics Working Group collaboration, A. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [INSPIRE].

  42. SuperB collaboration, M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, http://www.pi.infn.it/SuperB/?q=CDR, INFN, Pisa Italy (2007), pg. 453 [arXiv:0709.0451] [INSPIRE].

  43. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  44. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Proceedings of the Supergravity Stony Brook Workshop, P. Van Nieuwenhuizen and D. Freedman eds., New York U.S.A. (1979) [INSPIRE].

  45. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedinds of the Workshop on Unified Theories and Baryon Number in the Universe, A. Sawada and A. Sugamoto eds., Tsukuba Japan (1979) [INSPIRE].

  46. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  48. B. Pontecorvo, Mesonium and anti-mesonium, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429] [INSPIRE].

    Google Scholar 

  49. B. Pontecorvo, Inverse β-processes and lepton charge nonconservation, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [INSPIRE].

    Google Scholar 

  50. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Zh. Eksp. Teor. Fiz. 53 (1967) 1717 [Sov. Phys. JETP 26 (1968) 984] [INSPIRE].

    Google Scholar 

  51. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Merle and W. Rodejohann, The elements of the neutrino mass matrix: allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [INSPIRE].

    ADS  Google Scholar 

  55. A. Kleppe, Extending the Standard Model with two right-handed neutrinos, in Neutrino physics, Lohusalu Estonia (1995), pg. 118 [INSPIRE]

  56. E. Ma, D. Roy and U. Sarkar, A seesaw model for atmospheric and solar neutrino oscillations, Phys. Lett. B 444 (1998) 391 [hep-ph/9810309] [INSPIRE].

    ADS  Google Scholar 

  57. P. Frampton, S. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].

    ADS  Google Scholar 

  58. M. Raidal and A. Strumia, Predictions of the most minimal seesaw model, Phys. Lett. B 553 (2003) 72 [hep-ph/0210021] [INSPIRE].

    ADS  Google Scholar 

  59. V. Barger, D.A. Dicus, H.-J. He and T.-J. Li, Structure of cosmological CP-violation via neutrino seesaw, Phys. Lett. B 583 (2004) 173 [hep-ph/0310278] [INSPIRE].

    ADS  Google Scholar 

  60. T. Endoh, S. Kaneko, S. Kang, T. Morozumi and M. Tanimoto, CP violation in neutrino oscillation and leptogenesis, Phys. Rev. Lett. 89 (2002) 231601 [hep-ph/0209020] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].

    ADS  Google Scholar 

  62. A. Ibarra and G.G. Ross, Neutrino properties from Yukawa structure, Phys. Lett. B 575 (2003) 279 [hep-ph/0307051] [INSPIRE].

    ADS  Google Scholar 

  63. S. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays ℓ i j + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [INSPIRE].

    Article  ADS  Google Scholar 

  64. L. Wolfenstein, Different varieties of massive Dirac neutrinos, Nucl. Phys. B 186 (1981) 147 [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Petcov, On pseudoDirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [INSPIRE].

    ADS  Google Scholar 

  66. C.N. Leung and S. Petcov, A comment on the coexistence of Dirac and Majorana massive neutrinos, Phys. Lett. B 125 (1983) 461 [INSPIRE].

    ADS  Google Scholar 

  67. R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  68. D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  69. S.M. Bilenky, J. Hosek and S. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

    ADS  Google Scholar 

  70. MEGA collaboration, M. Brooks et al., New limit for the family number nonconserving decay μ +e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [INSPIRE].

    Article  ADS  Google Scholar 

  71. S. Petcov, The processes μeγ, μeee, ν νγ in the Weinberg-Salam model with neutrino mixing, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641] [Erratum ibid. 25 (1977)698] [Erratum ibid. 25 (1977) 1336] [INSPIRE].

    Google Scholar 

  72. S.M. Bilenky, S. Petcov and B. Pontecorvo, Lepton mixing, μe + γ decay and neutrino oscillations, Phys. Lett. B 67 (1977) 309 [INSPIRE].

    ADS  Google Scholar 

  73. T. Cheng and L.-F. Li, μeγ in theories with Dirac and Majorana neutrino mass terms, Phys. Rev. Lett. 45 (1980) 1908 [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric Standard Model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

    ADS  Google Scholar 

  75. A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, Lepton flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 104 [arXiv:1006.5356] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Hisano and K. Tobe, Neutrino masses, muon g-2 and lepton flavor violation in the supersymmetric seesaw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [INSPIRE].

    ADS  Google Scholar 

  77. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    ADS  Google Scholar 

  78. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  79. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  80. M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].

    ADS  Google Scholar 

  81. A. Akeroyd, M. Aoki and H. Sugiyama, Lepton flavour violating decays \( \tau \to \bar{\ell }\ell \) and μeγ in the Higgs triplet model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].

    ADS  Google Scholar 

  82. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

    Article  ADS  Google Scholar 

  83. F. del Aguila, J. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].

    Article  Google Scholar 

  84. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  85. F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  ADS  Google Scholar 

  86. A. Akeroyd, S. Moretti and H. Sugiyama, Five-lepton and six-lepton signatures from production of neutral triplet scalars in the Higgs triplet model, Phys. Rev. D 85 (2012) 055026 [arXiv:1201.5047] [INSPIRE].

    ADS  Google Scholar 

  87. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].

    ADS  Google Scholar 

  88. M.-C. Chen, Generation of small neutrino Majorana masses in a Randall-Sundrum model, Phys. Rev. D 71 (2005) 113010 [hep-ph/0504158] [INSPIRE].

    ADS  Google Scholar 

  89. E. Ma, M. Raidal and U. Sarkar, Verifiable model of neutrino masses from large extra dimensions, Phys. Rev. Lett. 85 (2000) 3769 [hep-ph/0006046] [INSPIRE].

    Article  ADS  Google Scholar 

  90. E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].

    Article  ADS  Google Scholar 

  91. A. Akeroyd and C.-W. Chiang, Phenomenology of large mixing for the CP-even neutral scalars of the Higgs triplet model, Phys. Rev. D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].

    ADS  Google Scholar 

  92. J. Bernabeu, A. Pich and A. Santamaria, CP phases in the charged current and Higgs sectors for Majorana neutrinos, Z. Phys. C 30 (1986) 213 [INSPIRE].

    ADS  Google Scholar 

  93. G. Leontaris, K. Tamvakis and J. Vergados, Lepton and family number violation from exotic scalars, Phys. Lett. B 162 (1985) 153 [INSPIRE].

    ADS  Google Scholar 

  94. M. Raidal and A. Santamaria, Muon electron conversion in nuclei versus μeγ: an effective field theory point of view, Phys. Lett. B 421 (1998) 250 [hep-ph/9710389] [INSPIRE].

    ADS  Google Scholar 

  95. E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].

    Article  ADS  Google Scholar 

  96. S. Petcov, Remarks on the Zee model of neutrino mixing (μeγ, heavy neutrinolight neutrino γ, etc.), Phys. Lett. B 115 (1982) 401 [INSPIRE].

    ADS  Google Scholar 

  97. J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower limits on μeγ from new measurements on U e3, arXiv:1204.1000 [INSPIRE].

  98. S.M. Bilenky and S. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 60 (1988) 575] [Erratum ibid. 61 (1989) 169] [INSPIRE].

    Article  ADS  Google Scholar 

  99. S.M. Bilenky, S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].

    ADS  Google Scholar 

  100. S.T. Petcov, Theoretical prospects of neutrinoless double beta decay, Phys. Scripta T 121 (2005) 94 [INSPIRE].

    Article  ADS  Google Scholar 

  101. S. Petcov, Neutrino mixing, leptonic CP-violation, the seesaw mechanism and beyond, Int. J. Mod. Phys. A 25 (2010) 4325 [INSPIRE].

    ADS  Google Scholar 

  102. S. Petcov, H. Sugiyama and Y. Takanishi, Neutrinoless double beta decay and H ±± ′± ± decays in the Higgs triplet model, Phys. Rev. D 80 (2009) 015005 [arXiv:0904.0759] [INSPIRE].

    ADS  Google Scholar 

  103. H. Klapdor-Kleingrothaus, I. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76 Ge in Gran Sasso 1990–2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [INSPIRE].

    ADS  Google Scholar 

  104. H. Klapdor-Kleingrothaus, A. Dietz, H. Harney and I. Krivosheina, Evidence for neutrinoless double beta decay, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231] [INSPIRE].

    ADS  Google Scholar 

  105. W. Rodejohann, Neutrino-less double beta decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].

    ADS  Google Scholar 

  106. S. Pascoli and S. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum, Phys. Lett. B 544 (2002) 239 [hep-ph/0205022] [INSPIRE].

    ADS  Google Scholar 

  107. S. Pascoli and S. Petcov, The SNO solar neutrino data, neutrinoless double beta decay and neutrino mass spectrum: addendum, Phys. Lett. B 580 (2004) 280 [hep-ph/0310003] [INSPIRE].

    ADS  Google Scholar 

  108. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

    ADS  Google Scholar 

  109. R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  110. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

    Article  ADS  Google Scholar 

  111. A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  112. A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, μ → eγ and τ → ℓγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [INSPIRE].

    ADS  Google Scholar 

  113. J. Bernabeu, E. Nardi and D. Tommasini, μe conversion in nuclei and Z physics, Nucl. Phys. B 409 (1993) 69 [hep-ph/9306251] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Molinaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, D.N., Ibarra, A., Molinaro, E. et al. The μe conversion in nuclei, μ, μ → 3e decays and TeV scale see-saw scenarios of neutrino mass generation. J. High Energ. Phys. 2012, 125 (2012). https://doi.org/10.1007/JHEP08(2012)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)125

Keywords

Navigation