Skip to main content
Log in

Lepton flavor violating τ decays in TeV scale type I see-saw and Higgs triplet models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The lepton flavour violating (LFV) τ decays τ → (e, μ)γ and τ → 3μ are investigated in the frameworks of the TeV scale type I see-saw and Higgs Triplet (or type II see-saw) models. Predictions for the rates of these processes are obtained. The implications of the existing stringent experimental upper bounds on the μe + γ and μ → 3e decay branching ratios for the predictions of the τ → (e, μ)γ and τ → 3μ decay rates are studied in detail. The possibilities to observe the indicated LFV τ decays in present and future experiments are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakamura and S.T. Petcov, Neutrino Masses, Mixing and Oscillations, in Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  2. B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  3. B. Pontecorvo, Mesonium and antimesonium, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429] [INSPIRE].

    Google Scholar 

  4. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [INSPIRE].

    Google Scholar 

  5. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  6. S.M. Bilenky, J. Hosek and S. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Molinaro and S. Petcov, The Interplay Between theLowandHighEnergy CP-Violation in Leptogenesis, Eur. Phys. J. C 61 (2009) 93 [arXiv:0803.4120] [INSPIRE].

    Article  ADS  Google Scholar 

  8. L. Wolfenstein, CP Properties of Majorana Neutrinos and Double beta Decay, Phys. Lett. B 107 (1981) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.M. Bilenky, N. Nedelcheva and S. Petcov, Some implications of the CP invariance for mixing of Majorana neutrinos, Nucl. Phys. B 247 (1984) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  10. B. Kayser, CPT, CP and c Phases and their Effects in Majorana Particle Processes, Phys. Rev. D 30 (1984) 1023 [INSPIRE].

    ADS  Google Scholar 

  11. G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  12. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  13. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, arXiv:1303.0754 [INSPIRE].

  14. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  15. SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  16. SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].

    Article  ADS  Google Scholar 

  17. BaBar collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ +− → e +−γ and τ +−μ +−γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Petcov, The Processes μeγ, μee \( \overline{e} \) , Neutrino’ → Neutrino γ in the Weinberg-Salam Model with Neutrino Mixing, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641] [Erratum ibid. 25 (1977) 698] [Erratum ibid. 25 (1977) 1336] [INSPIRE].

    Google Scholar 

  19. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity: Proceedings of the Supergravity Stony Brook Workshop, P. Van Nieuwenhuizen and D. Freedman eds., New York U.S.A. (1979).

  21. T. Yanagida, in Proceedinds of the Workshop on Unified Theories and Baryon Number in the Universe, A. Sawada and A. Sugamoto eds., Tsukuba Japan (1979).

  22. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  25. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  26. M. Raidal, A. Strumia and K. Turzynski, Low-scale standard supersymmetric leptogenesis, Phys. Lett. B 609 (2005) 351 [Erratum ibid. B 632 (2006) 752] [hep-ph/0408015] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Google Scholar 

  30. J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  31. S.M. Bilenky, S. Petcov and B. Pontecorvo, Lepton Mixing, μe +γ Decay and Neutrino Oscillations, Phys. Lett. B 67 (1977) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  32. T.-P. Cheng and L.-F. Li, Muon Number Nonconservation Effects in a Gauge Theory with V A Currents and Heavy Neutral Leptons, Phys. Rev. D 16 (1977) 1425 [INSPIRE].

    ADS  Google Scholar 

  33. T. Cheng and L.-F. Li, μeγ in Theories With Dirac and Majorana Neutrino Mass Terms, Phys. Rev. Lett. 45 (1980) 1908 [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Petcov, Heavy Neutral Lepton Mixing and μ → 3e Decay, Phys. Lett. B 68 (1977) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  35. http://comet.phys.sci.osaka-u.ac.jp:8080/comet.

  36. http://mu2e.fnal.gov/.

  37. PRIME Working Group collaboration, Y. Mori et al., An Experimental Search for μ e Conversion Process at an Ultimate Sensitivity of the Order of 10−18 with PRISM, LOI-25.

  38. http://projectx.fnal.gov/.

  39. Y. Kuno, private communication. This is part of the program of research planned to be realised with the MuSIC facility at Osaka University.

  40. N. Berger, A Novel experiment searching for the lepton flavour violating decay μeee, J. Phys. Conf. Ser. 408 (2013) 012070 [arXiv:1110.1504] [INSPIRE].

    Article  ADS  Google Scholar 

  41. SuperKEKB Physics Working Group collaboration, A. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [INSPIRE].

  42. M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays τ\( \overline{l} \) ll and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].

    ADS  Google Scholar 

  44. A. Ibarra, E. Molinaro and S. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ) -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Wolfenstein, Different Varieties of Massive Dirac Neutrinos, Nucl. Phys. B 186 (1981) 147 [INSPIRE].

    Article  ADS  Google Scholar 

  46. S.T. Petcov, On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double β-decay, Phys. Lett. B110 (1982) 245.

    Article  ADS  Google Scholar 

  47. C.N. Leung and S. Petcov, A Comment on the Coexistence of Dirac and Majorana Massive Neutrinos, Phys. Lett. B 125 (1983) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  49. E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electro-weak fits with TeV-scale sterile neutrinos, JHEP 05 (2013) 081 [arXiv:1302.1872] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Kleppe, Extending The Standard Model With Two Right-Handed Neutrinos, in Proceedings of the 3rd Tallinn Symposium on the Neutrino Physics, Lohusalu Estonia (1995), pg. 118.

  52. E. Ma, D. Roy and U. Sarkar, A Seesaw model for atmospheric and solar neutrino oscillations, Phys. Lett. B 444 (1998) 391 [hep-ph/9810309] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Frampton, S. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Raidal and A. Strumia, Predictions of the most minimal seesaw model, Phys. Lett. B 553 (2003) 72 [hep-ph/0210021] [INSPIRE].

    Article  ADS  Google Scholar 

  55. V. Barger, D.A. Dicus, H.-J. He and T.-j. Li, Structure of cosmological CP-violation via neutrino seesaw, Phys. Lett. B 583 (2004) 173 [hep-ph/0310278] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Endoh, S. Kaneko, S. Kang, T. Morozumi and M. Tanimoto, CP violation in neutrino oscillation and leptogenesis, Phys. Rev. Lett. 89 (2002) 231601 [hep-ph/0209020] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Ibarra and G.G. Ross, Neutrino properties from Yukawa structure, Phys. Lett. B 575 (2003) 279 [hep-ph/0307051] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The See-saw mechanism, neutrino Yukawa couplings, LFV decays l il j + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [INSPIRE].

    Article  ADS  Google Scholar 

  60. D. Dinh, A. Ibarra, E. Molinaro and S. Petcov, The μe conversion in nuclei, μeγ, μ→3e decays and TeV scale see-saw scenarios of neutrino mass generation, JHEP 08 (2012) 125 [arXiv:1205.4671] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays τ\( \overline{l} \) ll and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].

    ADS  Google Scholar 

  64. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

    Article  ADS  Google Scholar 

  65. F. del Aguila, J. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].

    Article  Google Scholar 

  66. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Akeroyd, S. Moretti and H. Sugiyama, Five-lepton and six-lepton signatures from production of neutral triplet scalars in the Higgs Triplet Model, Phys. Rev. D 85 (2012) 055026 [arXiv:1201.5047] [INSPIRE].

    ADS  Google Scholar 

  69. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M.-C. Chen, Generation of small neutrino Majorana masses in a Randall-Sundrum model, Phys. Rev. D 71 (2005) 113010 [hep-ph/0504158] [INSPIRE].

    ADS  Google Scholar 

  71. E. Ma, M. Raidal and U. Sarkar, Verifiable model of neutrino masses from large extra dimensions, Phys. Rev. Lett. 85 (2000) 3769 [hep-ph/0006046] [INSPIRE].

    Article  ADS  Google Scholar 

  72. E. Ma, M. Raidal and U. Sarkar, Phenomenology of the neutrino mass giving Higgs triplet and the low-energy seesaw violation of lepton number, Nucl. Phys. B 615 (2001) 313 [hep-ph/0012101] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Akeroyd and C.-W. Chiang, Phenomenology of Large Mixing for the CP-even Neutral Scalars of the Higgs Triplet Model, Phys. Rev. D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].

    ADS  Google Scholar 

  74. S. Petcov, Remarks on the Zee Model of Neutrino Mixing (μeγ, Heavy NeutrinoLight Neutrino γ, etc.), Phys. Lett. B 115 (1982) 401 [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Bernabeu, A. Pich and A. Santamaria, CP phases in the charged current and Higgs sectors for Majorana neutrinos, Z. Phys. C 30 (1986) 213 [INSPIRE].

    ADS  Google Scholar 

  76. G.K. Leontaris, K. Tamvakis and J.D. Vergados, Lepton- and family-number violation from exotic scalars, Phys. Lett. B 162 (1985) 153.

    Article  ADS  Google Scholar 

  77. S.M. Bilenky and S. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Dinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, D.N., Petcov, S.T. Lepton flavor violating τ decays in TeV scale type I see-saw and Higgs triplet models. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP09(2013)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)086

Keywords

Navigation