Skip to main content
Log in

Potential dependence of the admittance ofChara plasmalemma

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A computer-controlled apparatus is described, which combines the two powerful methods of voltage-clamping and admittance measurement. The 5-Hz admittance ofChara plasmalemma is obtained for transmembrane PD from −400 mV to 0. DC conductance is also measured by the bipolar staircase method. Both the DC and 5-Hz conductances at steady state display a central maximum at ≈−250 mV. This feature is attributed to the conductance/voltage characteristics of the H+ pump. The steady-state capacitance does not show any trend throughout the potential interval.

At the time of the delay, before excitation commences, the 5-Hz conductance is smaller than after excitation.

At the time of excitation the 5-Hz conductance echoes the time-course of the ionic current, while the capacitance undergoes a sharp decrease followed by an increase. A possible explanation of the capacitance behavior is attempted involving transport number effects and reactances associated with the Hodgkin-Huxley gating mechanism.

At punchthrough the membrane becomes inductive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. 1970. Electrical characteristics of the ionic psn-junction as a model of the resting axon membrane.J. Membrane Biol. 3:291–312

    Article  CAS  Google Scholar 

  • Armstrong, C.M., Bezanilla, F.: 1973. Currents related to movement of the gating particles of the sodium channels.Nature (London) 242:459–461

    CAS  Google Scholar 

  • Barry, P.H. 1970a. Volume flows and pressure changes during an action potential in cells ofChara australis. I. Experimental results.J. Membrane Biol. 3:313–334

    CAS  Google Scholar 

  • Barry, P.H. 1970b. Volume flows and pressure changes during an action potential in cells ofChara australis. II. Theoretical considerations.J. Membrane Biol. 3:335–371

    CAS  Google Scholar 

  • Barry, P.H. 1977. Transport number effects in the transverse tubular system and their implications for low frequency impedance measurements of capacitance of skeletal muscle fibers.J. Membrane Biol. 34:383–408

    Article  CAS  Google Scholar 

  • Barry, P.H., Hope, A.B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700–727

    CAS  PubMed  Google Scholar 

  • Barry, P.H., Hope, A.B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729–757

    CAS  PubMed  Google Scholar 

  • Beilby, M.J. 1981. Excitation-revealed changes in the cytoplasmic Cl concentration in “Cl-starved”Chara cells.J. Membrane Biol. 62:207–218

    Article  CAS  Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1976. Effect of temperature on punchthrough in electrical characteristics of the plasmalemma ofChara corallina.Aust. J. Plant Physiol. 3:819–26

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979a. The action potential inChara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma.Aust. J. Plant Physiol. 6:323–335

    CAS  Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979a. The action potential inChara corallina. III. The Hodgkin-Huxley parameters for the plasmalemma.Aust. J. Plant Physiol. 6:337–353

    CAS  Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979c. The action potential inChara corallina. IV. Activation enthalpies of the Hodgkin-Huxley gates.Aust. J. Plant Physiol. 6:355–365

    CAS  Google Scholar 

  • Bell, D.J., Coster, H.G.L., Smith, J.R. 1975. A computer based, four-terminal impedance measuring system for low frequencies.J. Phys. E. 8:66–70

    Article  Google Scholar 

  • Bisson, M.A., Walker, N.A. 1980. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH.J. Membrane Biol. 56:1–7

    Article  CAS  Google Scholar 

  • Bisson, M.A., Walker, N.A. 1981. The hyperpolarization of theChara membrane at high pH: Effects of external potassium, internal pH, and DCCD.J. Exp. Bot. 32:951–971

    Google Scholar 

  • Chandler, W.K., FitzHugh, R., Cole, K.S. 1962. Theoretical stability properties of a space-clamped axon.Biophys. J. 2:105–127

    CAS  PubMed  Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press; Berkeley

    Google Scholar 

  • Cole, K.S., Curtis, H.J. 1939. Electrical impedance of the squid giant axon during activity.J. Gen. Physiol. 22:649–670

    CAS  Google Scholar 

  • Coster, H.G.L. 1965. A quantitative analysis of the voltagecurrent relationships of fixed charge membranes and the associated property of punchthrough.Biophys. J. 5:669–686

    CAS  PubMed  Google Scholar 

  • Coster, H.G.L. 1973. The double fixed charge membrane. Low frequency dielectric dispersion.Biophys. J. 13:118–132

    PubMed  Google Scholar 

  • Coster, H.G.L., George, E.P., Simons, R. 1969. The electrical characteristics of fixed charge membranes: Solution of the field equations.Biophys. J. 9:666–684

    CAS  PubMed  Google Scholar 

  • Coster, H.G.L., Hope, A.B. 1968. Ionic relations ofChara australis. XI. Chloride fluxes.Aust. J. Biol. Sci. 21:243–254

    CAS  Google Scholar 

  • Coster, H.G.L., Smith, J.R. 1977. Low frequency impedance ofChara corallina: Simultaneous measurements of the separate plasmalemma and tonoplast capacitance and conductance.Aust. J. Plant Physiol. 4:667–674

    Google Scholar 

  • Curtis, H.J., Cole, K.S. 1937. Transverse electric impedance ofNitella.J. Gen. Physiol. 21:189–201

    Article  CAS  Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77

    CAS  Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E., Siebenga, E. 1977. K+ conduction description from the low frequency impedance and admittance of squid axon.J. Membrane Biol. 32:255–290

    Article  CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    CAS  Google Scholar 

  • Hope, A.B., Walker, N.A. 1961. Ionic relations of cells ofChara australis. IV. Membrane potential differences and resistances.Aust. J. Biol. Sci. 14:26–44

    CAS  Google Scholar 

  • Keifer, D.W., Lucas, W.J. 1982. Potassium channels inChara corallina. Control and interaction with the electrogenic H+ pump.Plant Physiol. 69:781–788

    CAS  Google Scholar 

  • Keynes, R.D., Rojas, E. 1974. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axons.J. Physiol. (London) 239:393–434

    CAS  Google Scholar 

  • Kishimoto, U. 1974. Transmembrane impedance of theChara cell.Jpn. J. Physiol. 24:403–417

    CAS  PubMed  Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y. 1980. The role of electrogenic pump inChara corallina.J. Membrane Biol. 55:149–156

    Article  CAS  Google Scholar 

  • Palti, Y., Adelman, W.J., Jr. 1969. Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp.J. Membrane Biol. 1:431–458

    Article  Google Scholar 

  • Richards, J.L., Hope, A.B. 1974. The role of protons in determining membrane electrical characteristics inChara corallina.J. Membrane Biol. 16:121–144

    Article  CAS  Google Scholar 

  • Shimmen, T., Tazawa, M. 1980. Intracellular chloride and potassium ions in relation to excitability ofChara membrane.J. Membrane Biol. 55:223–232

    Article  CAS  Google Scholar 

  • Smith, J.R. 1977. Electrical Characteristics of Biological Membranes in Different Environments. Ph. D. Thesis. pp. 65–80. University of New South Wales, Australia

    Google Scholar 

  • Smith, J.R., Beilby, M.J. 1983. Inhibition of electrogenic transport associated with the action potential inChara.J. Membrane Biol. 71:131–140

    Article  Google Scholar 

  • Smith, J.R., Coster, H.G.L. 1980. Frequency dependence of the A.C. membrane impedance ofChara: The effect of temperature.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 609–610. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Smith, P.T., Walker, N.A. 1981. Studies on the perfused plasmalemma ofChara corallina: I. Current-voltage curves: ATP and potassium dependence.J. Membrane Biol. 60:223–239

    CAS  Google Scholar 

  • Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. II. Control of the light-stimulated component of the membrane potential.Biochim. Biophys. Acta 332:387–398

    Google Scholar 

  • Spanswick, R.M. 1981. Electrogenic ion pumps.Annu. Rev. Plant Physiol. 32:267–289

    Article  CAS  Google Scholar 

  • Spear, D.J., Barr, J.K., Barr, C.E. 1969. Localisation of hydrogen ion and chloride ion fluxes inNitella.J. Gen. Physiol. 54:397–414

    Article  CAS  PubMed  Google Scholar 

  • Takashima, S. 1976. Membrane capacity of squid giant axon during hyper- and depolarizations.J. Membrane Biol. 27:21–39

    Article  CAS  Google Scholar 

  • Takashima, S. 1979. Admittance change of squid axon and during action potentials. Change in capacitive component due to sodium currents.Biophys. J. 26:133–142

    CAS  PubMed  Google Scholar 

  • Walker, N.A. 1982. Membrane transport in charophyte plants: Chemiosmotic but electrically versatile.In: Membrane and Transport: A Critical Review. R. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Walker, N.A., Beilby, M.J., Smith, F.A. 1979. Amine uniport at the plasmalemma of charophyte cells: I. Current-voltage curves, saturation kinetics, and effects of unstirred layers.J. Membrane Biol. 49:21–55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beilby, M.J., Beilby, B.N. Potential dependence of the admittance ofChara plasmalemma. J. Membrain Biol. 74, 229–245 (1983). https://doi.org/10.1007/BF02332126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332126

Key Words

Navigation