Skip to main content
Log in

The role of protons in determining membrane electrical characteristics inChara corallina

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The value of the potential difference between the vacuole and the external medium,ψ vo, and the effects of metabolic inhibitors upon it indicate that, under certain external conditions, there are two main factors determining the potential across the plasmalemma. At all external pH there is a passive diffusion potential and at pH≧6 there is an active electrogenic component of potential. Calculations of ionic permeabilities of K+, Na+ and Cl from their respective passive fluxes and application of the Goldman equation indicate that H+ permeability is approximately 25 times K+ permeability at pH 4 and 5 and possibly at pH≧6.ψ vo does not respond to increases in [K+]0 when a large electrogenic component of potential is present, even though the calculated value ofP K under these conditions is such as to predict significant changes inψ vo. It is suggested that this anomaly may be due to intrinsic properties of the electrogenic pump. There is evidence that the electrogenic pump is an active H+ efflux which calculations indicate is about 12 nmoles m−2 sec−1 at pH 5. However the electrogenic potential does not appear to be related to formation of acid and alkali regions in the external solution adjacent to cells ofChara.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, D. F., Ryan, T. E., Barr, C. E. 1973. The effect of light and darkness in relation to external pH on calculated H+ fluxes inNitella.In: Ion Transport in Plants. W. P. Anderson, editor. p. 141. Academic Press, London, New York

    Google Scholar 

  • Carpenter, D. O., Alving, B. O. 1968. A contribution of an electrogenic Na+ pump to membrane potential inAplysia neurones.J. Gen. Physiol. 52:1

    Google Scholar 

  • Coster, H. G. L. 1973. The double fixed charge membrane. Solution-membrane ion partition effects and membrane potentials.Biophys. J. 13:133

    Google Scholar 

  • Findlay, G. P., Hope, A. B. 1964. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62

    Google Scholar 

  • Findlay, G. P., Hope, A. B., Pitman, M. G., Smith, F. A., Walker, N. A. 1969. Ion fluxes in cells ofChara corallina.Biochim. Biophys. Acta 183:565

    Google Scholar 

  • Finkelstein, A. 1964. Carrier model for active transport of ions across a mosaic membrane.Biophys. J. 4:421

    Google Scholar 

  • Goldman, D. E. 1943. Potential, impedence and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  • Gutknecht, J. 1967. Ion fluxes and short-circuit current in internally perfused cells ofValonia ventricosa.J. Gen. Physiol. 50:1821

    Google Scholar 

  • Higinbotham, N. 1970. Movement of ions and electrogenesis in higher plant cells.Amer. Zool. 10:393

    Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37

    Google Scholar 

  • Hogg, J., Williams, E. J., Johnston, R. J. 1968. A simplified method for measuring membrane resistances inNitella translucens.Biochim. Biophys. Acta 150:518

    Google Scholar 

  • Hope, A. B. 1965. Ionic relations of cells ofChara australis. X. Effects of bicarbonate ions on electrical properties.Aust. J. Biol. Sci. 18:789

    Google Scholar 

  • Hope, A. B., Aschberger, P. A. 1970. Effects of temperature on membrane permeability to ions.Aust. J. Biol. Sci. 23:1047

    Google Scholar 

  • Hope, A. B., Richards, J. L. 1971. Proton fluxes and permeability in Characean cells.First Europ. Biophys. Congr., Proc., Vol. III

  • Hope, A. B., Simpson, A., Walker, N. A. 1966. The efflux of chloride from cells ofNitella andChara.Aust. J. Biol. Sci. 19:355

    Google Scholar 

  • Hope, A. B., Walker, N. A. 1960. Ionic relations of cells ofChara australis. III. Vacuolar fluxes of sodium.Aust. J. Biol. Sci. 13:277

    Google Scholar 

  • Hope, A. B., Walker, N. A. 1961. Ionic relations of cells ofChara australis. IV. Membrane potential differences and resistances.Aust. J. Biol. Sci. 14:26

    Google Scholar 

  • Jeschke, W. D. 1970. Lichtabhängige Veränderungen des Membranpotentials bei Blattzellen vonElodea densa.Z. Pflanzenphysiol. 62:158

    Google Scholar 

  • Keynes, R. D. 1969. From frog skin to sheep rumen: A survey of transport of salts and water across multicellular structures.Quart. Rev. Biophys. 2:177

    Google Scholar 

  • Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60

    Google Scholar 

  • Lannoye, R. J., Tarr, S. E., Dainty, J. 1970. The effects of pH on the ionic and electrical properties of the internodal cells ofChara australis.J. Exp. Bot. 21:543

    Google Scholar 

  • Lilley, R. McC., Hope, A. B. 1971. Chloride transport and photosynthesis in cells ofGriffithsia.Biochim. Biophys. Acta 226:161

    Google Scholar 

  • Lucas, W. J., Smith, F. A. 1973. The formation of alkaline and acid regions at the surface ofChara corallina cells.J. Exp. Bot. 24:1

    Google Scholar 

  • MacRobbie, E. A. C. 1962. Ionic relations ofNitella translucens.J. Gen. Physiol. 45:861

    Google Scholar 

  • Marmor, M. F., Gorman, A. L. F. 1970. Membrane potential as the sum of ionic and metabolic components.Science 167:65

    Google Scholar 

  • Oda, K. 1962. Polarized and depolarized states of the membrane inChara braunii with special reference to the transition between the two states.Sci. Rep. Tôhoku Univ., Ser. IV (Biol.) 28:1

    Google Scholar 

  • Rapoport, S. I. 1970. The sodium-potassium exchange pump: Relation of metabolism to electrical properties of the cell.Biophys. J. 10:246

    Google Scholar 

  • Raven, J. A. 1967. Ion transport inHydrodictyon africanum.J. Gen. Physiol. 50:1607

    Google Scholar 

  • Rent, R. K., Johnson, R. A., Barr, C. E. 1972. Net H+ influx inNitella clavata.J. Membrane Biol. 7:231

    Google Scholar 

  • Saddler, H. D. W. 1970. The membrane potential ofAcetabularia mediterranea.J. Gen. Physiol. 55:802

    Google Scholar 

  • Saito, K., Senda, M. 1973. The light-dependent effect of external pH on the membrane potential ofNitella.Plant Cell Physiol. 14:147

    Google Scholar 

  • Slayman, C. L. 1965. Electrical properties ofNeurospora crassa. Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69

    Google Scholar 

  • Slayman, C. L. 1970. Movement of ions and electrogenesis in microorganisms.Amer. Zool. 10:377

    Google Scholar 

  • Smith, F. A. 1967. The control of Na uptake intoNitella translucens.J. Exp. Bot. 18:716

    Google Scholar 

  • Smith, F. A., Lucas, W. J. 1973. The role of H+ and OH fluxes in the ionic relations of Characean cells.In: Ion Transport in Plants. W. P. Anderson, editor. p. 223. Academic Press, London, New York

    Google Scholar 

  • Spanswick, R. M. 1970. The effects of bicarbonate ions and external pH on the membrane potential and resistance ofNitella translucens.J. Membrane Biol. 2:59

    Google Scholar 

  • Spanswick, R. M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73

    Google Scholar 

  • Spanswick, R. M. 1973. Electrogenesis in photosynthetic tissues.In: Ion Transport in Plants. W. P. Anderson, editor. p. 113. Academic Press, London, New York

    Google Scholar 

  • Spear, D. G., Barr, J. K., Barr, C. E. 1969. Localization of hydrogen ion and chloride ion fluxes inNitella.J. Gen. Physiol. 54:397

    Google Scholar 

  • Vredenberg, W. J. 1973. Energy control of ion fluxes inNitella as measured by changes in potential, resistance and current-voltage characteristics of the plasmalemma.In: Ion Transport in Plants. W. P. Anderson, editor. p. 153. Academic Press, London, New York

    Google Scholar 

  • Walker, N. A. 1960. The electric resistance of the cell membranes in aChara and aNitella species.Aust. J. Biol. Sci. 13:468

    Google Scholar 

  • Walker, N. A., Hope, A. B. 1969. Membrane fluxes and electric conductance in Characean cells.Aust. J. Biol. Sci. 22:1179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, J.L., Hope, A.B. The role of protons in determining membrane electrical characteristics inChara corallina . J. Membrain Biol. 16, 121–144 (1974). https://doi.org/10.1007/BF01872410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872410

Keywords

Navigation