Skip to main content
Log in

Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

It has been shown in an earlier paper that the slow transient decrease in conductance, somtimes referred to as “creep”, obtained with small-to-medium hyperpolarizing current or voltage pulses is due to K+ transport number differences across the walls of the transverse tubular system. Using the same basic numerical analysis and the parameters already obtained experimentally in the previous paper for frog skeletal muscle in a sulphate Ringer's solution, this paper predicts the equivalent membrane capacitance and dynamic resistance due to transport number effects for very low amplitude and low frequency sinusoidal currents from the phase lag of the voltage response behind the current. Such sinusoidal currentper se give rise to an equivalent capacitance which increased from less than 1μF·cm−2 at 10 Hz to about 16μF·cm−2 at 0.01 Hz and to an equivalent dynamic membrane resistance which increases from its instantaneous slope resistance value of 11.7kωcm2 at 10 Hz to about 16kωcm2 at 0.01 Hz. Similar small sinusoidal components of current superimposed on depolarizing and hyperpolarizing pulses (25–45 mV) give rise to even greater “capacitances” at low frequencies (e.g., 24–28μF·cm−2 at 0.01 Hz). The response due to large sinusoidal currents was also investigated. These transport number effects help to explain the small discrepancies obtained by some workers between experimental and predicted values of skeletal muscle fiber impedances measured in the 1–10 Hz range and would seem to be critical for the interpretation of any skeletal muscle fiber impedance studies done at frequencies less than 1 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1969. The kinetics of mechanical activation in frog muscle.J. Physiol. (London) 204:207

    Google Scholar 

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970a. Voltage clamp experiments in striated muscle fibres.J. Physiol. (London) 208:607

    Google Scholar 

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970b. Slow changes in potassium permeability in skeletal muscle.J. Physiol. (London) 208:645

    Google Scholar 

  • Adrian, R. H., Freygang, W. H. 1962. The potassium and chloride conductance of frog muscle membrane.J. Physiol. (London) 163:61

    Google Scholar 

  • Almers, W. 1972a. Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules.J. Physiol. (London) 225:33

    Google Scholar 

  • Almers, W. 1972b. The decline of potassium permeability during extreme hyperpolarisation in frog skeletal muscle.J. Physiol. (London) 225:57

    Google Scholar 

  • Barry, P. H. 1976. Transport number effects in the transverse tubular system of muscle and their effects on low frequency A/C impedance analysis.Proc. Aust. Physiol. Pharmacol. Soc. 7:4P

    Google Scholar 

  • Barry, P. H., Adrian, R. H. 1973. Slow conductance changes due to potassium depletion in the transverse tubules of frog muscle fibers during hyperpolarizing pulses.J. Membrane Biol. 14:243

    Google Scholar 

  • Barry, P. H., Hope, A. B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700

    PubMed  Google Scholar 

  • Barry, P. H., Hope, A. B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729

    PubMed  Google Scholar 

  • Coster, H. G. L., Smith, J. R. 1974a. The effect of pH on the low frequency capacitance of the membranes ofChara corallina.In: Membrane Transport in Plants. Pp. 154–161. U. Zimmermann and J. Dainty, editors. Springer-Verlag, Heidelberg

    Google Scholar 

  • Coster, H. G. L., Smith, J. R. 1974b. The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion.Biochim. Biophys. Acta 373:151

    PubMed  Google Scholar 

  • Dewhurst, D. J. 1960. Concentration polarisation in plane membrane-solution systems.Trans. Faraday Soc. 56:599

    Google Scholar 

  • Eisenberg, R. S., Gage, P. W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.J. Gen. Physiol. 53:279

    PubMed  Google Scholar 

  • Endo, M. 1966. The entry of fluorescent dyes into the sarcotubular system of the frog muscle.J. Physiol. (London) 185:224

    Google Scholar 

  • Huxley, H. F. 1964. Evidence for continuity between the central elements of the triads and the extracellular space in frog sartorius muscle.Nature (London) 202:1067

    Google Scholar 

  • Katz, B. 1949. Les constantes électriques de la membrane du muscle.Arch. Sci. Physiol. 3:285

    Google Scholar 

  • McCracken, D. D. 1965. A Guide to Fortran IV Programming. John Wiley and Sons, New York

    Google Scholar 

  • Mobley, B. A., Eisenberg, B. R. 1975. Sizes of components in frog skeletal muscle measured by methods of sterology.J. Gen. Physiol. 66:31

    PubMed  Google Scholar 

  • Page, S. G. 1964. The organisation of the sarcoplasmic reticulum in frog muscle.J. Physiol. (London) 175:10P

    Google Scholar 

  • Peachey, L. D. 1965. The sarcoplasmic reticulum and the transverse tubules of the frog's sartorius.J. Cell. Biol. 25:209

    PubMed  Google Scholar 

  • Ralston, A. 1965. A First Course in Numerical Analysis. McGraw-Hill, New York

    Google Scholar 

  • Schaefer, H., Scholmerich, P., Haass, P. 1939. Der Elektrotonus und die Erregungsgesetze des Muskels.Pfluegers Arch. Gesamte Physiol. 241:310

    Google Scholar 

  • Segal, J.R. 1967. Electrical capacitance of ion-exchanger membranes.J. Theor. Biol. 14:11

    PubMed  Google Scholar 

  • Sokolnikoff, I. S., Redheffer, R. M. 1958. Mathematics of Physics and Modern Engineering. McGraw-Hill, New York

    Google Scholar 

  • Tasaki, I., Hagiwara, S. 1957. Capacity of muscle fiber membrane.Am. J. Physiol. 188:423

    PubMed  Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R. S. 1974a. Circuit models of the passive electrical properties of frog skeletal muscle fibers.J. Gen. Physiol. 63:432

    Article  PubMed  Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974b. Impedance of frog skeletal muscle fibers in various solutions.J. Gen. Physiol. 63:460

    PubMed  Google Scholar 

  • Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gall bladder.J. Membrane Biol. 1:92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, P.H. Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers. J. Membrain Biol. 34, 383–408 (1977). https://doi.org/10.1007/BF01870310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870310

Keywords

Navigation