Skip to main content
Log in

Excitation-revealed changes in cytoplasmic Cl concentration in “Cl-starved”Chara cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The changes in the cytoplasmic Cl concentration, [Cl] c , are monitored at the time of withdrawal (starvation) and subsequent replacement of Cl in the outside medium. The measurement technique exploits the involvement of Cl inChara excitation. The transient clamp current due to Cl,I Cl, is separated from other excitation transients through Hodgkin-Huxley (HH) equations, which have been adjusted toChara. TheI Cl amplitude depends on HH parameters, [Cl] c and the maximum membrane conductance to Cl,\(\overline {g_{Cl} } \). The results are discussed in terms of these quantities.I Cl and\(\overline {g_{Cl} } \) were found to fall after 6–10 hr of Cl starvation, thus supporting the hypothesis that [Cl c decreases in Cl-free medium. The best HH fit to “starved” data was obtained with [Cl c =3.5mm. The time-course forI Cl decline is considerably slower than the time-course of the rise of the starvation-stimulated influx. As cells starved for periods longer than 24 hr are re-exposed to Cl, it is revealed that while [Cl] c remains low during long starvation,\(\overline {g_{Cl} } \) increases to values greater than those of the normal cells. Such differences among cells starved for various lengths of time have not been detected previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beilby, M.J. 1977. An Investigation into the Electrochemical Properties of Cell Membranes During Excitation. Ph.D. Thesis. pp. 97–105. University of New South Wales, Australia

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979a. The action potential inChara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma.Aust. J. Plant Physiol. 6:323–335

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979b. The action potential inChara corallina. III. The Hodgkin-Huxley parameters for the plasmalemma.Aust. J. Plant Physiol. 6:337–353

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979c. The action potential inChara corallina. IV. Activation enthalpies of the Hodgkin-Huxley gates.Aust. J. Plant Physiol. 6:355–365

    Google Scholar 

  • Beilby, M.J., Walker, N.A.W. 1980. Chloride influx inChara: Electrogenic and probably proton-coupled.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 571–572. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Beilby, M.J., Walker, N.A.W. 1981. Chloride transport inChara: I. Kinetics and current voltage curves for probable proton symport.J. Exp. Bot. 126:43–54

    Google Scholar 

  • Bell, D.J., Coster, H.G.L., Smith, J.R. 1975. A computer based, four-terminal impedance measuring system for low frequencies.J. Phys. E:8:66–70

    Google Scholar 

  • Coster, H.G.L. 1966. Chloride in cells ofChara australis.Aust. J. Biol. Sci. 19:545–554

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. IX. Analysis of transient membrane currents.Aust. J. Biol. Sci. 17:400–411

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952a. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952b. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. (London) 116:497–506

    Google Scholar 

  • Hope, A.B., Simpson, A., Walker, N.A.W. 1966. The efflux of chloride from cells ofNitella andChara.Aust. J. Biol. Sci. 19:355–362

    Google Scholar 

  • Jones, S., Walker, N.A. 1980. Chloride compartmentation inChara corallina by efflux analysis.In: Plant Membrane Transport. R.M. Spanswick, W.J. Lucas and J. Dainty, editors. pp. 583–584. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y. 1980. The role of electrogenic pump inChara corallina.J. Membrane Biol. 55:149–156

    Google Scholar 

  • Kishimoto, U., Tazawa, M. 1965. Ionic composition of the cytoplasm ofNitella flexilis.Plant Cell Physiol. 6:507–518

    Google Scholar 

  • Lefevre, J., Gillet, C. 1970. Variations de la difference de potential electrochimique des chlorures chezNitella en presence de benzenesulphonate.Experientia 26:482–483

    PubMed  Google Scholar 

  • Lefevre, J., Gillet, C. 1971. Effects des cations externes sur l'activite des chlorures cytoplasmiques doses par l'electrode Ag−AgCl introduite dans la cellule deNitella.Biochim. Biophys. Acta 249:556–563

    PubMed  Google Scholar 

  • Reid, R. 1980. A Study of Adenylate Concentrations and Chloride Active Transport inChara corallina. Ph.D. Thesis. pp. 98–113. University of Sydney, Australia

    Google Scholar 

  • Richards, J.L., Hope, A.B., 1974. The role of protons in determining membrane electrical characteristics inChara corallina.J. Membrane Biol. 16:121–144

    Google Scholar 

  • Sanders, D. 1978. Regulation of Ion Transport in Characean Cells. Ph.D. Thesis. University of Cambridge, England

    Google Scholar 

  • Sanders, D. 1980a. Control of Cl influx inChara by cytoplasmic Cl concentration.J. Membrane Biol. 52:51–60

    Google Scholar 

  • Sanders, D. 1980b. The mechanism of Cl transport at the plasma membrane ofChara corallina. I. Co transport with H+.J. Membrane Biol. 53:129–141

    Google Scholar 

  • Sanders, D., Hansen, U.-P. 1981. Mechanism of Cl transport at the plasma membrane ofChara corallina. II. Transinhibition and the determination of H+/Cl binding order from a reaction kinetic model.J. Membrane Biol. 58:139–153

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1980. Intracellular chloride and potassium ions in relation to excitability ofChara membrane.J. Membrane Biol. 55:223–232

    Google Scholar 

  • Smith, F.A. 1970. The mechanisms of chloride transport in characean cells.New Phytol. 69:903–917

    Google Scholar 

  • Smith, F.A. 1972. Stimulation of chloride transport inChara by external pH changes.New Phytol. 71:595–601

    Google Scholar 

  • Smith, F.A. 1981. Comparison of cytoplasmic pH and Cl influx in cells ofChara corallina following “Cl-starvation”.J. Exp. Bot. (in press)

  • Smith, F.A., Walker, N.A. 1976. Chloride transport inChara corallina and the electrochemical potential difference for hydrogen ions.J. Exp. Bot. 27:451–459

    Google Scholar 

  • Spanswick, R.M., Williams, E.J. 1964. Electric potentials and Na, K and Cl concentrations in the vacuole and cytoplasm ofNitella translucens.J. Exp. Bot. 15:193–200

    Google Scholar 

  • Tazawa, M., Kishimoto, U., Kikuyama, M. 1974. Potassium, sodium and chloride in the protoplasm of characeae.Plant Cell Physiol. 15:103–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beilby, M.J. Excitation-revealed changes in cytoplasmic Cl concentration in “Cl-starved”Chara cells. J. Membrain Biol. 62, 207–218 (1981). https://doi.org/10.1007/BF01998166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01998166

Key words

Navigation